Industrial Utility Efficiency    

Industries

A small Australian company, Basil V.R. Greatrex (BVRG), is shaking up the compressed air industry in Australia. While other companies focus on the sale of more and bigger compressed air production equipment, BVRG is helping customers reduce their compressed air system size and lower system flow by attacking waste, inappropriate use, and at the same time improving air quality.

Auto

This northeastern U.S. automotive manufacturing facility spends $269,046 annually on energy to operate their compressed air system. This figure will increase as electric rates are raised from their current average of .019 cents per kWh. The set of projects, in this system assessment, reduce these energy costs by $110,166 or forty percent. Reliability of compressed air quality, however, is the main concern in this plant and the primary focus of this system assessment.

Bulk

The Lafarge Cement Distribution terminal located in Winnipeg, Canada has significantly reduced the site electrical demand and energy charges by changing the way they transport their cement.  Two new low-pressure rotary screw air compressors have replaced two large high-pressure air compressors that previously powered their dense phase transport system.  The resulting power reduction has saved the company 46 percent in transport operating costs.

Food

A major poultry processor and packager spends an estimated $96,374 annually on energy to operate the compressed air system at its plant located in a southern U.S. state.  The current average electric rate, at this plant, is 8 cents per kWh.

Medical

In the U.S. as an example, the NFPA has taken the view that if your compressor draws in good clean ambient air, the air stays clean through the compressor, is then dried and filtered, when you deliver it to the patient it will be entirely satisfactory. After all, when you went into the hospital that’s what you were breathing and when you leave you will breathe it again!

Metals

FABTECH 2016, North America’s largest collaboration of technology, equipment and knowledge in the metal forming, fabricating, welding and finishing industries, welcomed 1,500 exhibiting companies and a total of 31,110 attendees from over 120 countries last week to the Las Vegas Convention Center.

Paper

Rockline Industries is one of the largest global producers of consumer products, specializing in wet wipes and coffee filters. The company contacted the Arkansas Industrial Energy Clearinghouse after identifying that the compressed air system in their Springdale, Arkansas facility was a potential source of significant savings. Experts from the Clearinghouse then began working with Rockline Industries, representatives of the electric utility, and a local compressed air vendor to perform a complete evaluation of the system.

Pharmaceutical

Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.

Plastics

A plastic product manufacturer spends an estimated $245,000 annually on electricity to operate the air compressors in a compressed air system at its plant located in a midwestern U.S. state.  The main manufacturing process is plastic extruding. The current average electric rate, at this plant, is 7 cents per kWh. The compressed air system operates 8,760 hours per year and the load profile of this system is relatively stable during all shifts.

Power

Nuclear power plants produce electricity for people, business and industry.  Electricity is produced in a similar fashion as fossil fuel (i.e., coal, oil, etc.) power plants, using steam to drive a turbines which spin an electrical generator, producing the electricity. 

Printing

The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.

Transit

In aerospace manufacturing, tiny details matter most. For instance, if proper torque is not applied to the screws and bolts fastening an aircraft fuselage, catastrophic failures can result. Compressed air is used to power the tools needed to apply that torque, making the compressed air system a critical part of the facility, though it largely stays behind the scene.

Wastewater

A replacement strategy for air compressors and blowers integrated into a system-level approach towards energy efficiency can deliver significant energy savings and optimize equipment performance. At the Victor Valley Wastewater Reclamation Authority, a blower replacement project yielded annual energy savings of more than 928,000 kWh and $98,000 in energy costs, while improving the reliability of its secondary treatment process. In addition, the agency qualified for important incentives from its electric utility — significantly improving the project economics and resulting in a 2.94-year payback.
Insufficient focus at the design phase will kill a project. In one aerospace project, insufficient detail was paid to the physical size of the air compressor. The compressor didn’t fit in the allocated space—requiring the extension of the building, and costing tens of thousands of unbudgeted dollars. That had a significant, negative impact on the project return. 
Imagine a dairy farm. Do pictures of idyllic pastures populated by grazing, happy cows come to mind? What about the not-so-idyllic image of farmers milking cows by hand? Modern dairy farms work a little differently. Darigold, a farmer-owned dairy co-op located in the Pacific Northwest, has the happy cows, but production is more sophisticated. The company has eleven state-of-the-art production facilities churning out high-quality dairy products at mind-boggling rates. Milk, for instance, is produced to the tune of 2.6 million gallons per day. To maintain efficient production at scale, Darigold also has an innovative energy management program in place.
To produce healthy, high-quality cooking oil, this food processing company crushes and processes oil seeds shipped in from local farms. The oil produced is thought to be the healthiest cooking oil available, because it is low in saturated fat, high in monounsaturated fatty acid (MUFA), and polyunsaturated fat (PUFA), like omega-3 fatty acids. To increase the energy efficiency of its oil seed crushing and processing facility, the company optimized its compressed air system by combining three separate systems into one. Some end-use optimization was done to correct low pressure, particularly caused by some critical high-flow, short-duration events.
According to the Compressed Air and Gas Institute (CAGI) and the International Organization for Standardization (ISO), the three major contaminants in compressed air are solid particles, water, and oil. CAGI promotes proper use of air compressors with various educational tools, while ISO 8573 is directed at the very specific areas of compressed air purity and test methods, which this article will address. Microorganisms are also considered a major contaminant by CAGI, but will not be discussed in this article.
Health and safety issues are a major concern in the food industry. Not only can contaminated food products endanger consumers, but they also can cause significant damage to a company’s reputation and bottom line. Contamination can come from many sources—industrial lubricants among them. With the abundance of lubricated machinery used in the food industry, lubricant dripping from a chain or escaping through a leak in a component can prove catastrophic. Even with the most prudent maintenance and operating procedures, along with a strict HACCP (hazard analysis and critical control points) plan, contamination may still occur.
In the food and beverage industry, the moment a product leaves the production line, the clock starts ticking down to when that product will no longer be viable for sale or consumption. To combat the clock, modified atmospheric packaging (MAP) techniques are used to help maintain product freshness and increase shelf life. Nitrogen is the most cost effective, efficient and widely used industry solution for a company’s packaging needs—whether it is for manufacturing cheese, coffee, dried snack foods, or fresh and ready-to-eat (RTE) foods. MAP also helps to decrease chances of contamination or spoiling, keeping products on the market for longer and ultimately increasing the reach of distribution.
Technological trends in plastics manufacturing are driving the costs of production down. In industrial PET blow molding specifically, two innovative techniques have had major impacts over the last 15 years: “light weighting” the plastic bottles, and recirculating high-pressure compressed air. Both have helped to improve the energy efficiency of PET blow molding by reducing compressed air requirements dramatically.
PET Power Containers, a Canadian manufacturer of PET plastic containers, had plans for expanding its operations with the addition of more blow-molding equipment. Before the expansion could happen, however, the company needed to assess its compressed air system. Based in Vaughan, Ontario, PET Power provides a dizzying array of differently shaped and sized plastic bottles. Their operations run 24/7, and compressed air plays a key role in their primary manufacturing applications, including PET blow molding, PET preforming, and labeling bottles.
Plastic injection molding is a common process in manufacturing, and it can be used to produce just about anything. To create a part, molten plastic is injected into a hollow mold, where it is formed and cooled before being ejected from the cavity. Plastic injection molders make a seemingly limitless range of products, from fishing tackle boxes and kayak paddles to tooth brushes and miniscule medical devices.
A Canadian fiberglass plant has completed a lengthy compressed air improvement journey and achieved significant efficiency gains by applying “the systems approach.” Along the way, the company ran across many frustrating problems, the solutions to which were only determined after the entire system was monitored holistically using data loggers. The overall compressed air audit led to a reduction in energy usage of 48 percent, yielding savings worth $17,500 per year. The project also qualified for a large utility incentive of $32,000 with a calculated payback of 4.4 years.