Industrial Utility Efficiency    


According to the Compressed Air and Gas Institute (CAGI) and the International Organization for Standardization (ISO), the three major contaminants in compressed air are solid particles, water, and oil. CAGI promotes proper use of air compressors with various educational tools, while ISO 8573 is directed at the very specific areas of compressed air purity and test methods, which this article will address. Microorganisms are also considered a major contaminant by CAGI, but will not be discussed in this article.


Compressed Air Best Practices® (CABP) Magazine and the Compressed Air and Gas Institute (CAGI) cooperate to provide readers with educational materials, updates on standards and information on other CAGI initiatives. CABP recently caught up with Rick Stasyshan, Technical Consultant for the Compressed Air and Gas Institute (CAGI) and with Ian MacLeod, from CAGI member-company Ingersoll Rand to discuss the topic of motors on centrifugal air compressors.

NFPA 99 Medical Air

In the U.S. as an example, the NFPA has taken the view that if your compressor draws in good clean ambient air, the air stays clean through the compressor, is then dried and filtered, when you deliver it to the patient it will be entirely satisfactory. After all, when you went into the hospital that’s what you were breathing and when you leave you will breathe it again!

Energy Management

After almost three and a half years of development work the Canadian Standards Association C837-16 document “Monitoring and Energy Performance of Compressed Air Systems” has finally been published and is available for download.  The work in writing the document was done by a CSA Technical Subcommittee made up of personnel from power utilities and government organizations, compressed air manufacturers and end users from both USA and Canada, with the committee activities facilitated and coordinated by the CSA Group (see list of committee members).

Food Grade Air

Compressed air is a critical utility widely used throughout the food industry.  Being aware of the composition of compressed air used in your plant is key to avoiding product contamination.  Your task is to assess the activities and operations that can harm a product, the extent to which a product can be harmed, and how likely it is that product harm will occur. Assessing product contamination is a multi-step process in which you must identify the important risks, prioritize them for management, and take reasonable steps to remove or reduce the chance of harm to the product, and, in particular, serious harm to the consumer.
Compressed air is the most common utility used in a typical industrial facility. It encompasses most operating aspects of the plant. The compressed air system can end up being the most expensive utility due to the focus that if production is running - then leave the system alone. Processes and machines are added and as long as the compressor can handle the increasing load - all is good. This brings us to our subject matter. The plant adds a process, a specialty coating line, requiring respirator protection. The plant determines supplied air respirators are the best choice. They want to be responsible and do the right thing so they start by reviewing what OSHA has to say on the subject.
It was the Fall of 1997 in Germany. I was just another guy working in the German compressed air industry. East Germans were still being looked down on - seven years after unification, the Euro was launching in little over a year - forcing marketing managers like me to scramble and create unified european Euro pricing strategies, European Cohesion Funds were flowing out of Germany and into the Mediterranean (not literally), and the diminutive Mercedes “Smart Car” was the cool car for space-challenged urban dwellers. With this going on, you can imagine the surprise of the compressed air industry when compressed air was featured in “Der Spiegel”, a “Newsweek-like” weekly magazine in Germany with national distribution.
The rise in energy prices is an unwelcome reality in today’s manufacturing and business environment. And while the rate of price increases for natural gas, heating oil and electricity may vary from year to year, the upward trajectory is clear. Energy cost reduction strategies are vital to staying competitive. Compressed Air Best Practices® Magazine recently discussed heat recovery, from industrial compressed air systems, with the Compressed Air and Gas Institute’s (CAGI) Technical Director, Rick Stasyshan and with CAGI member – Werner Rauer of Kaeser Compressor. Their inputs should provide you with some insight in energy-saving technology.
In the absence of official third party specifications on energy efficiency, it is difficult to evaluate and compare blower technologies fairly and effectively. The lack of readily available evaluation tools leads to misinformation and unfair comparisons between technologies. Further, the performance verification process is difficult to prove.
Compressed Air Best Practices® Magazine recently discussed variable speed drive (VSD) air compressors with the Compressed Air and Gas Institute’s Technical Director, Rick Stasyshan and with CAGI member – Bob Baker of Atlas Copco. Their inputs should provide you with some insight to this energy-saving technology.
Plant engineers do not purchase air compressors or compressed air dryers on a regular basis. There may be decades between purchases, and with today’s more reliable and durable compressed air equipment, the interval between purchasing decisions grows ever longer. This lack of purchasing frequency, coupled with the significant investment in productivity that compressors and dryers represent, means it is important to make the right decision.
Compressed air is viewed as industry’s fourth utility. Compressed air is frequently the only means of effectively, consistently, efficiently and safely powering certain machinery and processes. It enables users to perform critical work to manufacture, build and process the products we use every day. The world cannot function without compressed air. CABP recently caught up with Rick Stasyshan, the Compressed Air and Gas Institute’s recently appointed Technical Consultant, to shed some light on CAGI’s activities and industry involvement.
Compressed air is a key utility supporting the food packaging and food processing industries in North America. Compressed air must be contaminant-free to ensure the protection of the food products processed in each facility. The U.K. Code of Practice for Food-Grade Air helps define three types of compressed air systems and air purification specifications required for each.
Over the years, analyzing compressed air system operation and efficiency has gone under various names and taken many different shapes and forms. You may know these as; Assessments, Audits, Studies, and Surveys, but in all cases the compressed systems are analyzed using techniques, such as metering and measuring, to assess the system’s performance and identify opportunities for improvement. The problem is that the results of these activities have varied widely; leaving the end-user to try and determine what is usable, credible and implementable. This has led to a lot of “no actions“, resulting in assessments, audits, studies, and surveys being put on the shelf to collect dust.
This article will examine in detail four of the five acceptable WAGD implementations under NFPA 99, along with some alternative ways they may be implemented. This article will not deal with passive implementations.