Industrial Utility Efficiency    

End Uses

At a Midwest window manufacturing plant, the cooling process for the plastic frame pieces, after leaving the extruder, was critical to process productivity and quality. Too much cooling air (or not enough cooling air) would generate scrap and rejected product. The plants’ 17 extruders and 55 separate blow-offs in these lines had similar cooling stations at the cooling boxes. They consisted of about three hoses at each exit frame angled down to the extruded piece moving past it. The compressed air flow was controlled by a manual control valve set by an operator. The operator used his experience to control the flow delivered and thereby control the product quality.
This food & beverage plant is a large (500,000 sq ft) meat processing plant with twenty packaging lines and nine palletizers. The compressed air system is supplied from three separate rooms with seven individual lubricant-cooled, single and two-stage rotary screw compressors. The plant has four blower purge desiccant dryers designed to deliver a - 40°F pressure dewpoint.
Proper compressed air supply to the IS Machine, in glass container manufacturing, is critical. Each process requires carefully controlled pressure, air quality (dryers), and flow as necessary for optimum production with minimum scrap. Most IS machine operations, which Air Power has reviewed over the years, offer significant energy savings opportunities with low capital costs. The final results also enhance quality and productivity.
Air gauging relies on a law of physics that states flow and pressure are directly proportionate to clearance and react inversely to each other. As clearance increases, air flow also increases and air pressure decreases portionately. As clearance decreases, air flow also decreases and air pressure increases.
This article reviews portions of an audit report of a compressed air system in a food industry factory located in the U.S. Although the audit explored different supply-side options the client should consider to improve dynamic efficiency, we will focus on the demand side of the system for this article.
This brewery is a relatively large operation with nine production lines plus a keg line. There are five bottle lines and four can lines. Operations in the plant include palletizing de-palletizing, filling, packaging operations, and brewing. Annual plant electric costs for compressed air production, as operating today, are $693,161 per year.  If the electric costs of $43,016 per year associated with operating ancillary equipment such as the blower purge dryers are included, the total electric costs for operating the air system are $736,177 per year.  These estimates are based upon a blended electric rate of $0.06 /kWh.
The plant air system consists of eight, single-stage, lubricated, Sullair rotary screw compressors. All units are in good working order.  Units 2, 3, 4 and 7 are water-cooled and units 6, 8, 9, 10 and 11 are air-cooled. The main plant air system has two primary compressed air dryers, a Thompson Gordon model TG 2000 refrigerated dryer, and a Sullair model SAR 1350 heatless desiccant dryer.  Both units are working according to their design. The TG 2000 uses approximately 11.2 kW and is a non-cycling type unit, and the SAR 1350 uses approximately 200 cfm of purge air to regenerate the wet tower. 
When an air system requires large quantities of air (ca. >100 m3/min) and air demand highly fluctuates during the day, it is common belief among end-users that large variable speed screw compressors can deliver significant savings opportunities by precisely matching the compressed airflow to the system’s demand. Where the daily flow demand has a variability of up to 90% of the maximum air demand, the study compares the energy consumption of six alternative solutions in terms of number of installed compressors, compressor sizes and types of compression technologies (i.e., oil free centrifugal and oil free rotary).  
This factory, located in the U.S. northeast, spent an estimated $120,000 annually on energy to operate the compressed air system. The group of projects recommended below reduced these energy costs by $73,700 or 61% of current use. These estimates are based upon a blended electric rate of $0.114/kWh.
Stretch blow molding equipment requires a significant amount of energy—both compressed air and electrical—to produce bottles. Creating an effective and efficient process, as well as monitoring and maintaining optimal process settings, can result in significant energy cost reduction. These efforts will also help produce containers that meet all of the required quality standards.
This meat processing and packaging factory spent an estimated $203,640 annually on energy to operate the compressed air system at their Midwestern facility. Based on the air system operating 8,760 hours per year, the group of projects recommended below could reduce these energy costs by an estimated $107,522 or 47% of current use. In addition, these projects will decrease compressor maintenance costs. Estimated costs for completing the recommended projects total $21,900. This figure represents a simple payback period of 2 months.