Industrial Utility Efficiency

End Uses

In this article, we will provide detail on the characteristics of the baseline system and then share the energy-saving work identified in two projects. These two projects represent work which can be performed by the maintenance teams in every plant. These are also project opportunities we find in almost every plant we visit. The two projects are to (1) repair/replace condensate drains wasting compressed air and (2) to perform a compressed air leak survey.

Making Sense of Compressed Air at a Huge Chemical Plant

A chemical plant spends an estimated \$587,000 annually on electrical energy to operate their compressed air system. In addition, the plant has an expenditure on rental air compressors of equal or greater size - but this will not be covered in this article. The plant was built in the 1940s and modernized in the 1970s. The plant generates its own power and serves many processes. The average cost per kWh is \$0.0359.

Compressed Air Savings with Nozzles or Blowers

Compressed air is used as a convenient and often necessary source of air flow to perform blow-offs, cooling, or drying.  And since compressed air is a costly utility, a frequent recommendation in this magazine and audits is to reduce the compressed air use by using high efficiency engineered nozzles.  Using these nozzles is a good practice as they are designed in a way that uses the compressed air to accelerate the surrounding air to deliver the same mass transfer effect as a standard nozzle (or tube) with a much larger orifice.

Plastic Extruder Optimizes Blow-Offs for Cooling

At a Midwest window manufacturing plant, the cooling process for the plastic frame pieces, after leaving the extruder, was critical to process productivity and quality. Too much cooling air (or not enough cooling air) would generate scrap and rejected product. The plants’ 17 extruders and 55 separate blow-offs in these lines had similar cooling stations at the cooling boxes. They consisted of about three hoses at each exit frame angled down to the extruded piece moving past it. The compressed air flow was controlled by a manual control valve set by an operator. The operator used his experience to control the flow delivered and thereby control the product quality.

Poultry Plant Reduces Compressed Air Use by 44%

A major poultry processor and packager spends an estimated \$96,374 annually on energy to operate the compressed air system at its plant located in a southern U.S. state.  The current average electric rate, at this plant, is 8 cents per kWh.

Kaeser’s Uniform Focus on System Specific Power Benefits UniFirst

UniFirst is one of North America’s largest workwear and textile service companies. They outfit nearly two million workers in clean uniforms and protective clothing each workday. Founded in an eight-stall garage in 1936, the Company has grown to 240 customer servicing locations throughout the U.S. and Canada servicing 300,000 business customer locations. The subject of this article is an energy-saving Air Demand Analysis (ADA), conducted by Kaeser Compressors, at UniFirst’s centralized 320,000 square foot hub Distribution Center located in Owensboro, Kentucky.

Utility Energy Efficiency Program Viewpoint - Calculating Project Savings: Vortex Vacuum Generators and Outside Air Intake

The intent of this article is to provide readers with simple examples of calculations one can perform to evaluate two sample energy efficiency projects for compressed air systems; pressure sensing vortex vacuum generators and outside air intake (for air compressors).

German Lab Relies upon Water-injected Oil-free Air Compressor

Rotary screw air compressor that makes its own lubricant from the surrounding air delivers oil-free compressed air to an environmental laboratory in Stuttgart, Germany -

Many sensitive sectors of industry require oil-free compressed air. However, meeting this demand is often not as simple as it sounds. One way is to use oil-injected air compressors with downstream air treatment to meet the demand. A second option is oil-free air compressors, which operate without lubricants. Both versions have their own advantages as well as risks. Another alternative is to use rotary screw air compressors that use water as a lubricant.

Control Panel Cooling Change Saves Compressed Air Electrical Costs

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.

Lantech Case Erectors Engineered for Compressed Air Efficiency

Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Systems Approach Cuts Fabric Mill Energy Costs

A large fabric mill has implemented an energy management system based on the ISO 50001 standard to track their compressed air system efficiency.  As a result of information gained from this system, and measures learned in some recent compressed air training, the company has reduced their compressed air system costs while at the same time achieving increased fabric production output. The savings were gained by not only optimizing the supply side of the system, but by also addressing the end uses.