Industrial Utility Efficiency    

Leaks

Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.
“Instead of adding supply equipment, we fix air leaks and incorporate high-efficiency air nozzles, blower packages and point-of-use receivers.” These demand-side actions stabilize compressed air system pressure and this ultimately increases production output, reduces production down-time and spoilage costs, and decreases the power costs of the compressed air system.
This Midwestern prepared food company now spends $269,463 annually on energy to operate their compressed air system. This figure will increase as electric rates are raised from their current average of 6.2 cents per kWh. The set of projects recommended below will reduce these energy costs by $112,902 or 41%. In addition, these projects will enhance productivity and quality and reduce equipment maintenance costs. Estimated costs for completing the projects total $146,102, which represents a simple payback of 15.6 months.
Understanding the supply side of the system is important, but more important is first looking at compressed air demand. One demand that is consistently in need of attention in industrial facilities is the air flow caused by leaks.
The secret to success is to understand the nature of what type of leak produces a detectible ultrasound and what does not, along with the techniques that can be used for effective leak identification.
This refinery currently spends $735,757 annually on the electricity required to operate the compressed air system at its plant. The group of projects recommended in the system assessment will reduce these energy costs by an estimated $364,211 (49% of current use). Estimated costs for completing the recommended projects total $435,800. This figure represents a simple payback period of 14.4 months. The firm also reduced compressed air demand by 732 scfm allowing them to save $441,544 by down-sizing the back-up rental diesel air compressors.
This factory currently spends $735,757 annually on the electricity required to operate the compressed air system at its plant. The group of projects recommended in the system assessment will reduce these energy costs by an estimated $364,211 (49% of current use). Estimated costs for completing the recommended projects total $435,800. This figure represents a simple payback period of 14.4 months.
Compressed air leaks - every system has them.  Is a leak identification and control program economically rewarding and/or necessary? Upper management sometimes doesn’t recognize the true cost of not repairing air leaks.  Knowing the high cost of compressed air, why wouldn’t every facility with a compressed air piping system implement a continuous leak identification and repair program?
This commercial printing facility is located in the Northeastern part of the U.S.  Like most facilities, the plant has seen many changes over the years.
Sustainability at RRD starts with a philosophy. It is then executed through a global policy and objectives. RRD’s philosophy does not see sustainability as making a choice between being cost-effective and improving environmental impacts. On the contrary, sustainability represents integrating these two factors. This philosophy guides our sustainability objectives and strategies.
This stamping plant is a 2.5 million-square-foot facility with over two thousand employees.  At the time of the assessment, the plant was processing approximately 1,600 tons of steel per day into automotive vehicle components and parts such as body parts.