Industrial Utility Efficiency    

Instrumentation

Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.
Compressed Air Best Practices interviewed Gregory Rhames, Asset Reliability Manager/Energy Manager at Verallia. As background, Verallia is the packaging division of Saint-Gobain. Verallia employs 15,500 people globally and makes about 25 billion glass bottles and jars each year. We employ 350 people at Madera where we produce about 1 million wine, champagne and sake bottles per day.
Production and quality engineers in industries like the food & beverage, pharmaceutical, semiconductor, and chemical sectors have established internal specifications for oil-free compressed air. The product spoilage and safety issues at risk make oil-free compressed air an absolute necessity in certain processes.
Many times, the hierarchy of making improvements in your compressed air system will begin with the larger equipment. If your compressor is outdated, inefficient or sized improperly for your plant, the cost of replacing it may scare you away from proceeding down the efficiency path. It is also typical to first concentrate on updating the controls of a compressor to best match peak demands and lulls in the need for air and, while this is a very good step to take in your overall plan of attack, it can also burden your budget.  
Dewpoint is defined as the temperature to which a gas (e.g. air) must be cooled, at constant pressure, for water vapor to begin to condense to liquid water. In other words, when the dewpoint temperature has been reached, the gas is fully saturated with water vapor.
Sitting on his desk the day Brian began his new job as Plant Engineer for Carbo Ceramics’ McIntyre, GA facility was a proposal to purchase a new 150 HP air compressor as a backup machine. The facility already had six of these machines and, yes, all six ran almost continuously.
The secret to success is to understand the nature of what type of leak produces a detectible ultrasound and what does not, along with the techniques that can be used for effective leak identification.
Most facilities don’t prioritize the cost of operating compressed air systems—they just want to get the job done. A recent market study1 found that only 17 percent of compressed air users valued efficiency as a compressed air system management goal. Nine percent were concerned with containing energy costs. Seventy one percent simply wanted to deliver a consistent, reliable air supply.  
The NPE2009 international plastics showcase was held June 22-26 in Chicago’s McCormick Place. While attendance was down from NPE2006, the preliminary total of visitor registrations numbered 44,000. Sustainability and energy efficiency was a prominent topic in the booths of exhibitors. Manufacturers of compressed air and injection molding equipment had many developments with Sustainability to show the visitors to NPE2009.
This commercial printing facility is located in the Northeastern part of the U.S.  Like most facilities, the plant has seen many changes over the years.
The primary objective of this case study is to illustrate the process in which industrial facilities can qualify for energy incentives on projects that reduce the energy usage of their compressed air system.