Industrial Utility Efficiency    

Instrumentation

Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.
Over the last several decades, Air Power USA has reviewed many various types of plastic injection molding operations throughout the U.S.
Compressed Air Best Practices interviewed Paul Lukitsch.  Mr. Lukitsch is the Regional Facilities & Energy Manager for Millipore Corporation.
Reducing energy costs and pollution emissions involves many areas within an industrial facility.  My studies have found seven (7) key (or common) areas where low cost practical projects can be implemented.  Combined, these projects provide savings exceeding 10% of the annual energy spend with an average payback of less than one year.
Nuclear power plants produce electricity for people, business and industry.  Electricity is produced in a similar fashion as fossil fuel (i.e., coal, oil, etc.) power plants, using steam to drive a turbines which spin an electrical generator, producing the electricity. 
With all of the different LEED credits and associated M&V requirements and tax incentive opportunities for businesses to reduce energy consumption, we have seen an increasing demand for metering. Companies are looking for more ways to estimate cost savings and prove that their energy saving investments are working.
Compressed Air Best Practices Magazine interviewed Sid Van der Meer (President) and Terry Nickel (Office Manager) of the Northwest Equipment Company.
A four thousand, five hundred and fifty pound (4550 lbs.) race car is running at 170 mph and facing wind resistance of 150 mph. The car then enters a curve creating a three-degree “yaw” (the change in angle from the direction the car is headed and the airstream).  The car struggles to maintain speed as the yaw changes and the dynamic downforce load on the car changes.  Suddenly, the driver-less car comes to a stop on the stainless-steel track...