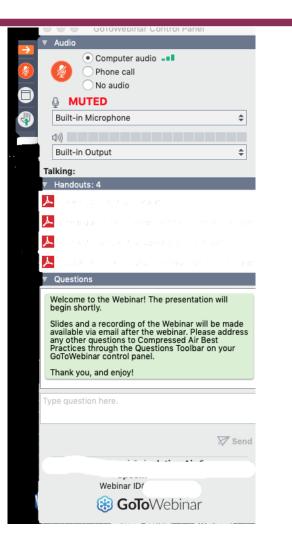
Optimize your Compressed Air System with Proper Maintenance

Ron Marshall Marshall Compressed Air Consulting *Keynote Speaker*

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to attendees within 2 days


Sponsored by

Q&A Format

• Panelists will answer your questions during the Q&A session at the end of the Webinar.

- Please post your questions in the Questions Window in your GoToWebinar interface.
- Direct all questions to Compressed Air Best Practices® Magazine

Handouts

Disclaimer

All rights are reserved. The contents of this publication may not be reproduced in whole or in part without consent of Smith Onandia Communications LLC. Smith Onandia Communications LLC does not assume and hereby disclaims any liability to any person for any loss or damage caused by errors or omissions in the material contained herein, regardless of whether such errors result from negligence, accident, or any other cause whatsoever.

All materials presented are educational. Each system is unique and must be evaluated on its own merits.

Mark Your Calendars for the Best Practices 2024 EXPO & Conference!

JOIN US IN ATLANTA

October 29-31, 2024 at the Cobb Galleria Centre

SPEAK AT THE CONFERENCE

Track 1– Sustainability Through Energy/Water Conservation Measures

Track 2 – Quality, Safety and Reliability

At the end of the webinar, we are having a fun contest for a chance to win a free full conference pass valued at \$675!

SUPER EARLY BIRD RATES END AUGUST 8th

cabpexpo.com

As a Speaker, you will receive complimentary access to the Conference, a \$675 value!

https://cabpexpo.com/conference/speaker-submission/

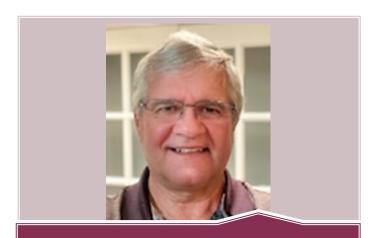
BEST PRACTICES EXPO & CONFERENCE CABPEXPO.COM COMPRESSED AIR / VACUUM / COOLING

For Questions: Kimberly@airbestpractices.com

Optimize your Compressed Air System with Proper Maintenance

Introduction by

Compressed Air Best Practices® Magazine


Sponsored by

About the Speaker

Ron Marshall Marshall Compressed Air Consulting

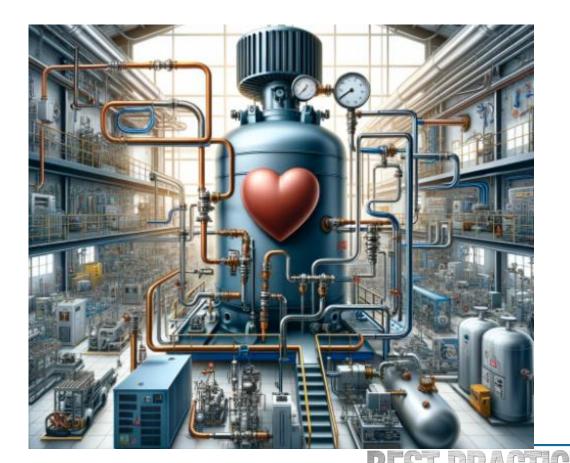
- Consultant MCAC
- 38 years with Power Utility
- 27 years Technical CA Support
- CAC Level 2 Instructor
- International Trainer UNIDO
- 600+ projects completed

Sponsored by

The Air Guy

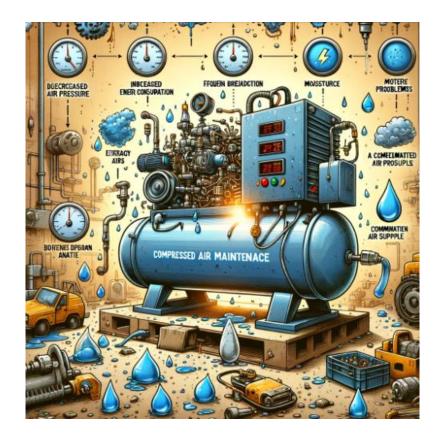
Coming Up

- The importance of maintenance
- Six important maintenance items
 - 1. Leaks
 - 2. Filters
 - 3. Dryers and traps
 - 4. Ventilation and cooling
 - 5. Operating temperatures
 - 6. Lubricant maintenance/analysis
- Summary



Air system is the heart of the plant

- A failed system take can down the whole plant and stops production.
- Impending failure usually has detectable warning signs.
- Often failure is often caused by lack of maintenance.
- Timely maintenance can detect warning signs and prevent failure



RESSED AIR / VACUUM

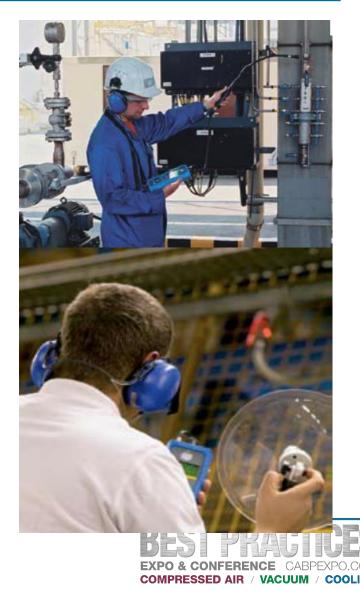
Symptoms of poor maintenance

- Unstable or inadequate air pressure
- High operating costs and inefficiency
- Frequent breakdowns
- Equipment overheating
- Moisture problems
- Contaminated air supply

Assessing a system for maintenance issues

- Establish a consistent maintenance routine
- Check pressures and pressure differentials coordination
- Check operating temperatures/room temperatures
- Look for water or oil in the air/condensate drains
- Lubricant leaks
- Any warnings or maintenance reminders
- Check loaded/running hours
- Follow manufacturers maintenance guidelines
- Resources: <u>CAGI</u> or <u>CAC Best Practices Manual</u>

Six important maintenance items


- 1. Leak management
- 2. Filter maintenance, end-use filters and lubricators
- 3. Air dryer and condensate trap maintenance
- 4. Proper ventilation, cooling filtering, water quality
- 5. Monitor and track temperatures
- 6. Lubricant maintenance/analysis

Leak management

- Leaks can make up 20% to 30% of total system demand
- Proactive leak maintenance programs target 5%
- In addition to wasting energy leaks also:
 - Cause a drop in pressure causing end uses to function less effectively, adversely affecting production
 - Leaks shorten the effective life of all system equipment
 - Leaks can lead to adding unnecessary compressor capacity

Leak detection

- Leak Tag Program
- Leak is identified with a tag and logged for repair later
- Tag is often a two-part tag
 - One-part stays on leak
 - Other part is turned into maintenance, indentifying the location, size and description of the leak to be repaired.
- Most important fix the leak!

How acoustic camera leak detection works

- Ultrasonic guns widely used
- New acoustic imagers use microphones and sophisticated signal processing to identify leaks.
- Allows the user to pinpoint sound leaks in walls, doors and floors and target the leak.

Filter maintenance, end-use filters and lubricators


- Main filter pressure loss can cause rapid compressor cycling and inefficiency
- Use good quality pressure differential gauges change when indicated or every year
- End use components often represent most of the pressure loss in the system
- Size for peak flow not average
- Maintain lubricator levels, running empty allows wear in connected tools and components

- Highest pressure drops usually are found at the points of use including undersized or leaking hoses, plastic tubing, disconnects, filters, regulators and lubricators.
- Design then maintain for minimal loss.
- Saves money at the compressors if compressors are correctly controlled.
- Savings depends on compressor control modes

Refrigerated air dryer maintenance

- Over-heat overload is the most common problem – often caused by poor compressor cooling.
- Every 20°F doubles the water content.
- · Keep ambient cool, ventilate dryer too.
- Use wet tanks to cool inlet air and catch water.
- Use secondary cooling where needed
- When time to replace go with thermal mass cycling dryer to save energy.

Desiccant air dryer maintenance

- Desiccant that is too hot will not dry, maintain compressor cooling.
- Filter maintenance important on desiccant dryers, desiccant likes to absorb oil but reduces the capacity.
- Ensure purge flow is correct.
- Test and maintain desiccant, it ages.
- Dryer dewpoint control must operate correctly test – if missing retrofit.

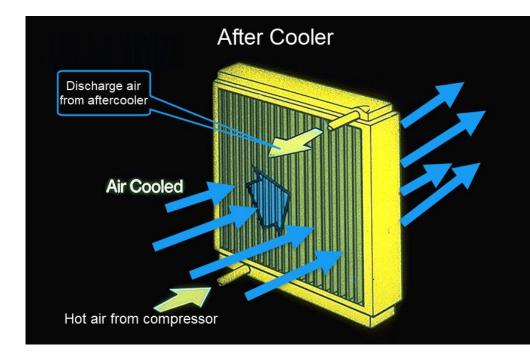
Proper ventilation, cooling, water quality

- Filter the cooling air in dusty environments
- Cross ventilation is required remove radiated heat
- Uninsulated ducts heat up cooling air
- Maintain evaporative cooling systems and ensure proper blowdown
- Test cooling water to ensure quality
- Recover heat for savings

COOLING

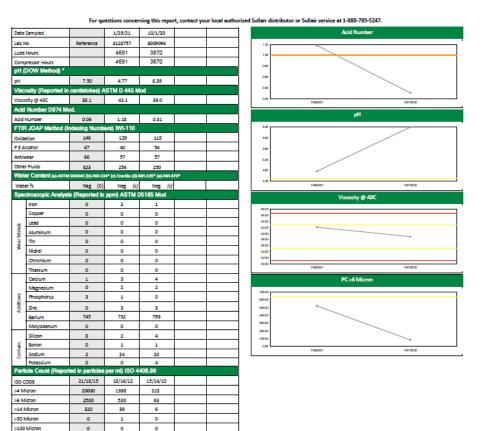
Monitor and track temperatures

- Temperature is an indicator of how systems are performing
- The following measurements are important:
 - Air Intake Temperature
 - Ambient Air Temperature (cooling air)
 - Intercooler Approach Temperature (multi-stage compressors)
 - Lubricant Injected Rotary Screw Oil Temperature
 - Compressor Discharge Temperature
 - Thermo-mixing Valve Temperature (Oil in, Oil out and to sump cooler)



Monitor and track temperatures

- The following other measurements are important:
 - Aftercooler Outlet Temperatures
 - Dryer Inlet Temperatures
 - Dryer (Condenser) Ambient Temperature (aircooled)
 - Dryer (Condenser) Water Inlet and Outlet Temperatures (water-cooled)
 - Motor Temperatures
 - Bearing Temperatures

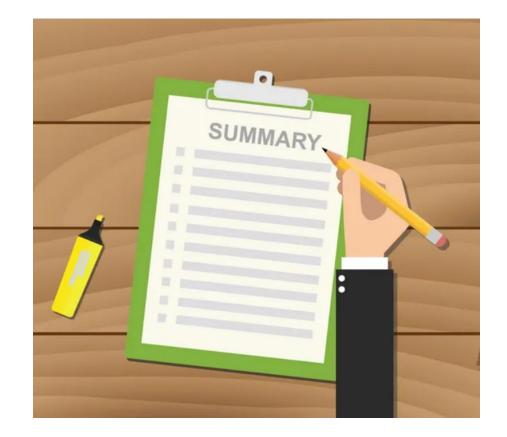


Lubricant analysis

- Lubricant analysis results are an indicator of compressor condition
- Key variables to watch in lubricant analysis include:
 - Particle count (ISO code)
 - Total acid number (TAN)
 - Anti-oxidant level
 - Lubricant life remaining
 - Viscosity
 - Contamination ... other lubricants
 - Water ppm

					-	
Analysis Report						
Lube Type:	SULLUBE	Serial No.:	202004010053	ATTN: Service Manager		
Compressor MFG:	SULLAIR	Asset No:	3	MacDon Industries, Ltd.		
Compressor Model:	L511009V-V06	Report:	2/24/2021	Analyst: MM (8240/37/1)		
Problems: ***High Acid Number ***Low pH		Customer Notes:				

Low pH is caused by ingesting adds or of kinnine from the environment. The corrosion protection of the fluid decreases significantly after exposure to these adds. Increased acid number indicates antioxident depletion and is an indicator of lubricant degradation. It is recommend that this mechine be drained and refiled due to an add number in excess of 1.0.



Summary

- Maintenance is important as the compressed air system is the heart of the plant
- Need to maintain for reliability, efficiency, pressure stability and air quality.
- Six important maintenance areas:
 - 1. Leaks
 - 2. Filters and lubricators
 - 3. Dryers and traps
 - 4. Ventilation and cooling
 - 5. Operating temperatures
 - 6. Lubricant maintenance/analysis

About the Speaker

John Wilkerson Kaishan • Training & Support Leader, Kaishan

 21 years of compressor service & installation experience

• Certified in oil-free, centrifugal, oil-flooded, scroll, and refrigeration compressor maintenance

Sponsored by

Rotary Screw Compressor System Setup & Maintenance

June 2024

John Wilkerson Technical Support Manager Kaishan USA

KLINGELNBERG

Rotary Screw Compressor Systems

Building an effective maintenance plan
Check your compressor's vitals
Oil Sampling

Rotary Screw Compressor Systems

Building an effective maintenance plan Check your compressor's vitals Oil Sampling

Building an Effective Maintenance Plan

Choose a business partner

- Create daily check list
- Forget tolerances, look for changes

Building an Effective Maintenance Plan

- Choose a business partner
- Create daily check list
- Forget tolerances, look for changes

Building an Effective Maintenance Plan

- Choose a business partner
- Create daily check list
- Forget tolerances, look for changes

Choose a Business Partner

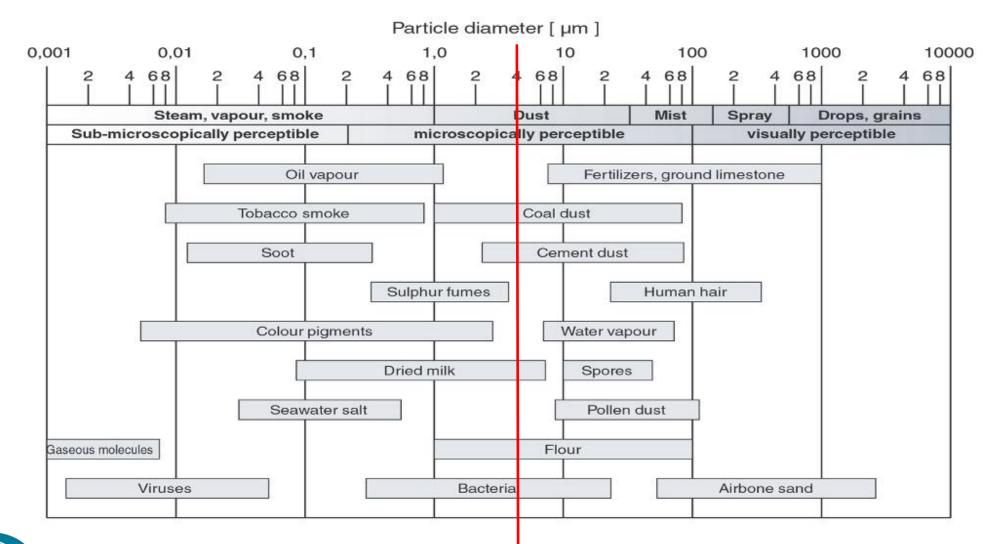
- Certified Technicians
- Invests in training
- Offers maintenance agreements
- Qualified to perform warranty repair
- Use OEM filters, separators and fluids!

34

Rotary Screw Compressor Systems

Building an effective maintenance plan Check your compressor's vitals Oil Sampling

Check Your Vitals


- Reduce load cycles
- Reduce motor starts
- Remove/prevent condensation
- Control temperatures
- Adapt to your ambient conditions

Adapt to Ambient Conditions

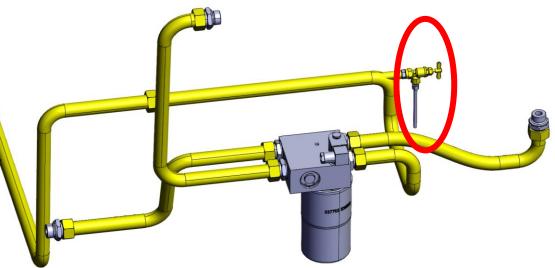
KAIS

НАП

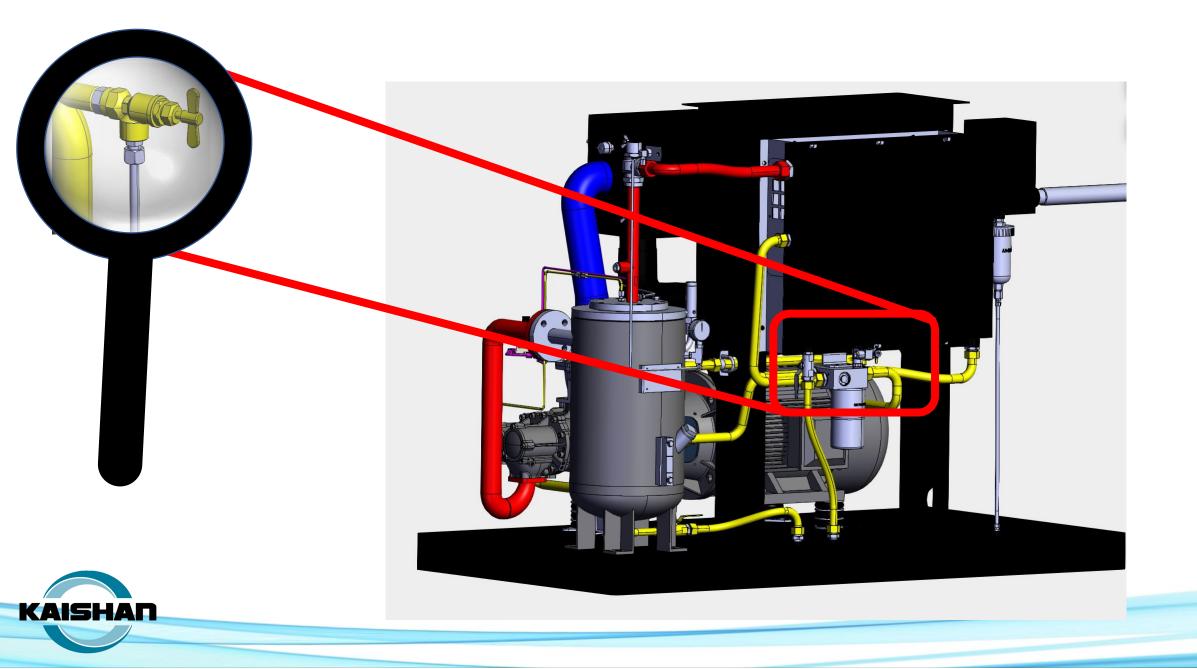
Corrosion Coupon

KAISHAN

https://corrosionmonitor.com/products/corrosion-classification-coupon-plus


Rotary Screw Compressor Systems

Building an effective maintenance plan Check your compressor's vitals Oil Sampling



Sample Procedure

- Locate oil sample valve (photo on next slide)
 - Needle type valve on clean side of filter
 - Reduces "nuisance" bad reports for high water/particle count
- Fill sample bottle up to above 80% but below the threads of the bottle.
- Seal the bottle tightly, wipe clean. Pre-label or label sample bottle immediately after filling to avoid mix-ups.
- Make sure bottles are labelled with full sample details
- Oil Samples are taken to determine if the oil is failing
- Do not rely on the oil samples to protect the airend from debris or water

				KAISH	АП									Analysis R 51-202-0577	eport						0 1 NORMAL	2	3 DRMAL C	4 RTICAL			
																				L							
	Com	iments						, BREATHERS, FJ and filter chang			s at a SEVERE LI	EVEL. Particl	le Count is a	it a MINOR LEVEL	. Barium is an ac	dditive in many transi	missio	on, gear and com	pressor	oils; Pleas	se provide COMI	PONEN	IT MODE	L number t	co compare	e data to the	
San	nple Appro	over Comments	16-1	Mar-2023		no chi	anges																				
	Wear Metals (ppm) Contaminant Metals (ppm) Multi-Source Metals (ppm)														-	Additiv	e Metals (p	pm)									
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	r Vanadiu	ım Silicon	Sodium	Potassiu	ım Titanium	Molybden	um Antimony	Ma	anganese Lit	hium	Boron	Magnesium	Ca	lcium	Barium	Phosph	iorus Zi	inc
BL	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0		0	0	0	0		0	2	20		0
1	1	0	0	1	0	0	0	0	0	0	5	5	0	0	0	0		0	0	0	0		6	25	34	-	7
					Sampl	e Informa	ation							Contar	minants						Fluid F		es				
Sample	#	Date Sampled	Da	ate Received	Lube Ti	me U	nit Time	Lube Chang	je Lub	be Added Fi	lter Change	Fuel D	Dilution	So	bot	Water	I	Viscosity 40°C	Viscos	sity 100 °C	C Acid Number	· Ba	se No. 4739	Oxida	ation	Nitration	
					h		h			gal		ę	%		%	%		cSt		cSt	mg KOH / g	mg	ЮН / g	abs /	cm	abs / 0.1mr	m
BL 1		N/A 08-Mar-2023		15-Jan-2021 15-Mar-2023	0		0 11869	Unk Yes		0	Unk Yes						-	46.9 47.7		8.3	0.02						
· · ·		00 Mai 2020		10 Mai 2020	001		11000	Particle Cour	nt (part		105						-		<u> </u>	Ado	ditional Testing	<u> </u>		1			
Sample	2 #	ISO Code	> 4		> 6	> 1(D	> 14		> 21	> 38	2	> 70	> 100	Test Method	Water by Karl Fischer - mod. 6304C	ŀ				······						
BL	В	ased On 4/6/14	particles , 2948		icles / mL 496	particles 62		particles / mL 18	pa	articles / mL	particles / m		cles / mL 0	particles / mL	ASTM D7647	ppm 53											•
1		23 / 21 / 17	53202		16803	364		10		215	8		0	0	ASTM D7647 ASTM D7647	797											Ľ
-											•																

K

Account Information Component Information Sample Information Account Number: Svial #: K3718058900 Tracking Number: 33286594 Lab Number: 1 501622 Company Name: Component Information Model Number: KSF-30 Lab Number: 1 501622 Lab Number: 1 501622 Contact: Address: Model Number: KSF-30 Data Analyst: Number: 3 501622 Lab Number: 1 501622 Phone Number: Model Number: KSF-30 Model Number: SASF-30 Sample: 12 Jul 2023 Model Number: Model Number: KSF-30 Component Information Requested Receive: 1 Phage 2023 Model Number: Model Number: Signal Product Namufacture: KABISAN Sample: 23 Aug 2023 Filter Information Requested Mscelianeous Information Product Name: K1 4000 FG Vscostly Grade: ISO 45 Comments Suggest monitoring the drain interval and equipment operating temperature. Acid Number IS SVRIEX VIEM: Wish may be due to oxidation, contamination, oxidation, incorrectly Identified Vscosity grade. To ada to the correct standards for this component, Wile unit is hold rain as much of the compressor Number State to corroske component wear. Wiscosity is be due to Component. Wile unit is nearwight be COMPNENT MODEL number to compare data to the correct standards for this component, Wile unit is hold rain as much of the compressor Nulki as possible. Drain all tow-lying areas. Refill with COMPRES		K	AIS	SHA	'n								1 ysi :		epoi	ſ		Ove	0 NORMAI		2 ABNORMAL	S CR	4 IITICAL ments.	}	The severity will have a corresponding highlighted section and comments
Filter Information Miscellaneous Information Product Information Filter Type: Information Requested Product Manufacturer: KAISHAN Product Manufacturer: KAISHAN Micron Rating: 0 Product Manufacturer: KAISHAN Product Manufacturer: KAISHAN Comments Suggest monitoring the drain interval and equipment operating temperature. Acid Number is SEVERELY HIGH, thinking be due to oxidation, contamination, xxidation, incorrectly identified viscosity grade, or adding a different viscosity grade to the component. Zinc is slightly high for this lubricant. Please provide COMPRESSOR FLUSH. Sample 24-Aug-2023 no changes Approver No changes Sample Using the tais (ppm) Multi-Source Metals (ppm) Additive Metals (ppm) Wear Metals (ppm) Ketals (ppm) Multi-Source Metals (ppm) Additive Metals (ppm) Mitter Signer Using the tais (ppm) Multi-Source Metals (ppm) Additive Metals (ppm) Using the tais (ppm) Ketals (ppm) Multi-Source Metals (ppm) Additive Metals (ppm) If anything is out of tolerance. It will be highlighted and a comment 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Company C A	Numbe y Nam Conta Addres	er: ne: ct: ss:	Inforr	nation	1			Compo Ma	Ser el Nun onent ⁻ nufact M Applica	ial #: nber: Type: turer: odel: ation:	K3718 KRSP- ROTAF COMP KAISH Inform UNKN	058060 50 RY SCR RESSO AN nation	J EW R	ested			L L	ng Nui ab Nui ab Loc vata An Sam Rece	mber: mber: ation: alyst: npled: eived:	23132F I - 5616 Indiana RNM 12-Jul-2 <mark>21-Aug</mark>	65984 522 apolis 2023 - 2023			
Verticity Verticity Contaminant Metals (ppm) Multi-Source Metals (ppm) Additive Metals (ppm) If anything is out of tolerance It will be highlighted and a comment will be provided # -	Micron Comment Sample	er Typ n Ratin ts S o M to s C 2	oe: Inf ng: 0 ugges xidatio 10DEF o the c tandai	format at mon on, co RATELY compo rds for RESSO	itoring ntamir Y HIGH onent. r this c R FLUS	g the c nation H. Cau Zinc is compo SH. Aft	drain in with a ises inc s slight onent. ^v ter 250	an acio clude o tly hig While	al and e dic pro contam h for th unit is	equipm duct, c ninatio nis lub hot dr	nent o pri lubr n, oxic ricant. rain as	peratir icant n dation, Please much	ng tem nixing. incorr e provi of the	peratu Eleva ectly i de CO comp	ted ac dentif MPON ressor	id leve ied vis NENT N	mber i els leac cosity MODEI	Pro Visc s SEVE d to col grade, numb	anufac oduct N osity C RELY H rrosive or ado per to o	turer: lame: irade: lIGH, v comp ding a compa	KAISHA KTL 400 ISO 46 vhich m onent v differer re data	N 00 FG ay be vear. V nt visc to the	viscos osity <u>o</u> e corre	ty is Irade ct	
	# aldu uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	o O Chromium	0 0 0 0 0	Mluminum 0 0 1	Copper 0 0 2 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Е Ю О О О 1 О	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	Me uo Silico 1 0 1 1 1 1	Eals (p Eals (p Eals Control C	(mq botassinm 0 0 0	o o o Titanium	o o Molybdenum	0 0 Antimony	o o o Manganese	0 0 0 0	U 0 0 0 0 1 1	Magnesium 0 0	Calcinm 0 0 0 0	0 Barium 1 0 0	9 9 7 5	2 2 1 0 1 60 56	

"BL" is the baseline based on what a new oil looks li

The most recent sample is at the bottom

KAISHAN

		Sample	e Inforr	nation					Contaminants	_	Fluid Properties							
Sample #	Date Sampled	Date Received	ع Lube Time	ح Unit Time	Lube Change	eb Added	Filter Change	& Fuel Dilution	%	% Water	දි Viscosity 40°C	cosity 100 °C	Acid bumber Acid	H Base No. → base No. D4739	us age / sidation	abs / 0.1mm		
BL	N/A	15-Jan-2021	0	0	Unk	0	Unk				45.0	7.7	0.01	3				
1	28-Feb-2022	22-Mar-2022	879	5469	No	0	Yes				46.5		0.02					
2	31-Aug-2022	21-Sep-2022	4	0	Yes	0	Yes				48.3		2.12					
3	24-Feb-2023	16-Mar-2023	0	0	No	0	Yes				50.0		1.21					
4	08-Jun-2023	07-Jul-2023	1961	8902	No	0	Yes				53.9		2.40					
5	12-Jul-2023	21-Aug-2023	2314	9255	No	0	Yes				56.7		3.94					

		_		Partio	cle Count	(particle	s/mL)	_				Additional Testing	
	IE # ISO Code	> 4	> 6	> 10	> 14	> 21	> 38	> 70	> 100	Test Method	Water by Karl Fischer - mod. 6304C		
	Based On	particles /	/particles /	particles /									
	4/6/14	mL	mL	mL	mL	mL	mL	mL	mL		ppm		Pay close attention
E	BL 17/15/ 12	1285	310	60	20	4	0	0	0	ASTM D7647	1		Pay close attention
	$\begin{array}{c c} 21 & 7 \\ \hline 1 & 16 \end{array}$	17301	5867	1394	476	94	3	0	0	ASTM D7647	17		to water content
	2 19/17/ 14	3255	986	275	110	30	2	0	0	ASTM D7647	75		
	3 18/17/ 13	2197	748	184	60	13	0	0	0	ASTM D7647	38		
	4 19/18/ 16	4092	2009	679	344	141	12	0	0	ASTM D7647	106		
	5 16/14/ 11	493	99	23	12	4	1	0	0	ASTM D7647	182		
	Commonts ar	o odvisonu s	ank and are	bacad on th	a accumpti	on that the	comple and	data submi	ttad are vali	d Deculte		bitams tastad. Missing fluid or component information limits the	

Comments are advisory only and are based on the assumption that the sample and data submitted are valid. Results device the device items tested. Missing fluid or component information limits the evaluation. No warranty is expressed or implied. Measurement uncertainty available upon request.

		Air F	ilter			Oil f	ilter					
				Partic	le Count	(particle	/mL)					Additional Testing
Sample #	ISO Code	> 4	> 6	> 10	> 14	> 21	> 38	> 70	> 100	Test Method	Water by Karl Fischer - mod. 6304C	
Sam	Based On 4/6/14	particles / mL	articles / mL	particles / mL	/ particles mL	particles / mL	articles / mL	/ particles mL	/ particles mL	1	ppm	
1	24 / 23 / 20	155110	70629	18653	7074	1987	117	2	1	ASTM D7647	122	

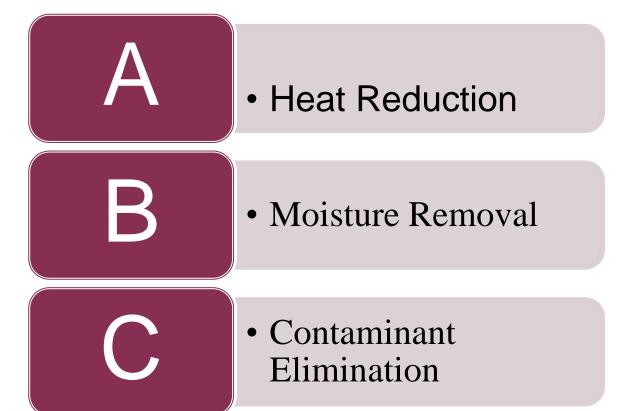
Comments are advisory o ly and are based on the assumption that the simple and data submitted are valid. Results relate only to the items tested. Missing fluid or component information limits the evaluation. No warrant is expressed or implied. Measurement uncertainty available upon request.

Conclusions:

- Setup your system properly
- Maintain it regularly & adjust
- Work with an expert vendor or local distributor trained in compressor systems.
- I'll be glad to help you with your questions contact me.

Ihank you

John Wilkerson– Kaishan USA 251-257-0773 jwilkerson@kaishanusa.com www.kaishanusa.com

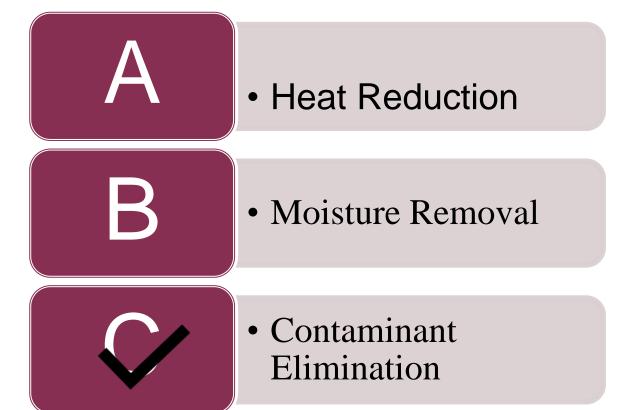


Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What is the main function of a filter in a compressed air system?


*By entering you are giving permission to announce your name if you are a winner

Best Practices EXPO Contest

Play for a chance to win a **FREE Full Conference Pass** to the Best Practices 2024 EXPO & Conference!! This is a \$675 value! This contest is open to factory personnel, compressed air distributors, utility incentive programs and engineering firms. Exhibiting and sponsor companies are not qualified. Winners will be randomly selected from those who submitted a correct answer and notified tomorrow via email.

Please submit your answer in the upcoming poll

What is the main function of a filter in a compressed air system?

*By entering you are giving permission to announce your name if you are a winner

Optimize your Compressed Air System with Proper Maintenance

Q&A

Please submit any questions through the Question Window on your GoToWebinar interface, directing them to Compressed Air Best Practices Magazine. Our panelists will do their best to address your questions and will follow up with you on anything that goes unanswered during this session. **Thank you for attending!**

Sponsored by

The recording and slides of this webinar will be made available to attendees via email later today.

PDH Certificates will be e-mailed to Attendees within 2 days.

June 2024 Webinar Advanced Aeration Control for Blowers

Tom Jenkins, P.E. JenTech Inc. Keynote Speaker

Thursday, June 13, 2024– 2:00 PM EST Register for free at

www.airbestpractices.com/webinars

Sponsored by

