Industrial Utility Efficiency    

Industries

A small Australian company, Basil V.R. Greatrex (BVRG), is shaking up the compressed air industry in Australia. While other companies focus on the sale of more and bigger compressed air production equipment, BVRG is helping customers reduce their compressed air system size and lower system flow by attacking waste, inappropriate use, and at the same time improving air quality.

Auto

This northeastern U.S. automotive manufacturing facility spends $269,046 annually on energy to operate their compressed air system. This figure will increase as electric rates are raised from their current average of .019 cents per kWh. The set of projects, in this system assessment, reduce these energy costs by $110,166 or forty percent. Reliability of compressed air quality, however, is the main concern in this plant and the primary focus of this system assessment.

Bulk

The Lafarge Cement Distribution terminal located in Winnipeg, Canada has significantly reduced the site electrical demand and energy charges by changing the way they transport their cement.  Two new low-pressure rotary screw air compressors have replaced two large high-pressure air compressors that previously powered their dense phase transport system.  The resulting power reduction has saved the company 46 percent in transport operating costs.

Food

Parrheim Foods, a division of Parrish and Heimbecker, is an innovative starch, protein and fiber mill situated in Saskatoon, Saskatchewan, Canada.  The plant has improved system efficiency and reduced production problems by addressing some problems with the consumption of compressed air by their reverse pulse baghouse cleaning operations.  This effort has allowed them to turn off one of their 100 hp air compressors, saving significant electricity costs.

Medical

In the U.S. as an example, the NFPA has taken the view that if your compressor draws in good clean ambient air, the air stays clean through the compressor, is then dried and filtered, when you deliver it to the patient it will be entirely satisfactory. After all, when you went into the hospital that’s what you were breathing and when you leave you will breathe it again!

Metals

FABTECH 2016, North America’s largest collaboration of technology, equipment and knowledge in the metal forming, fabricating, welding and finishing industries, welcomed 1,500 exhibiting companies and a total of 31,110 attendees from over 120 countries last week to the Las Vegas Convention Center.

Paper

Rockline Industries is one of the largest global producers of consumer products, specializing in wet wipes and coffee filters. The company contacted the Arkansas Industrial Energy Clearinghouse after identifying that the compressed air system in their Springdale, Arkansas facility was a potential source of significant savings. Experts from the Clearinghouse then began working with Rockline Industries, representatives of the electric utility, and a local compressed air vendor to perform a complete evaluation of the system.

Pharmaceutical

Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.

Plastics

A plastic product manufacturer spends an estimated $245,000 annually on electricity to operate the air compressors in a compressed air system at its plant located in a midwestern U.S. state.  The main manufacturing process is plastic extruding. The current average electric rate, at this plant, is 7 cents per kWh. The compressed air system operates 8,760 hours per year and the load profile of this system is relatively stable during all shifts.

Power

A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.

Printing

The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.

Transit

In aerospace manufacturing, tiny details matter most. For instance, if proper torque is not applied to the screws and bolts fastening an aircraft fuselage, catastrophic failures can result. Compressed air is used to power the tools needed to apply that torque, making the compressed air system a critical part of the facility, though it largely stays behind the scene.

Wastewater

A replacement strategy for air compressors and blowers integrated into a system-level approach towards energy efficiency can deliver significant energy savings and optimize equipment performance. At the Victor Valley Wastewater Reclamation Authority, a blower replacement project yielded annual energy savings of more than 928,000 kWh and $98,000 in energy costs, while improving the reliability of its secondary treatment process. In addition, the agency qualified for important incentives from its electric utility — significantly improving the project economics and resulting in a 2.94-year payback.
Compressed air is used in more than 70 percent of all manufacturing activities, ranging from highly critical applications that may impact product quality to general “shop” uses. When compressed air is used in the production of pharmaceuticals, food, beverages, medical devices, and other products, there seems to be confusion on what testing needs to be performed.
Ahresty Wilmington Corporation (AWC) was founded in 1988 and is located in Wilmington, Ohio. Currently AWC employs over 900 people with sales totaling $192 million. They have grown steadily, all while continuously improving and staying on the leading edge of technology. AWC is a tier-1 automotive supplier servicing their entire customer base in the United States. AWC has established an efficient and integrated production system that incorporates die-casting, finishing, machining, and assembly operation using just-in-time production methods to provide its customers with quality products at a competitive price.
In recent years, we have seen an upward trend of higher production manufacturers wanting to integrate their air gauging quality checks from a stand-alone, outside-of-machine device where the operator is performing a manual check to an automated in-process gauge. There are several reasons for this trend, including higher quality standards, tighter tolerances, as well as running a leaner operation. The benefits are 100 percent inspection of the required geometric callout, as well as handshaking between measuring device and machine to make each piece better than the prior one. It also removes any bad parts.
When a company is considering making an investment of more than a million dollars in system upgrades, it is crucial for them to review all options to get the best return. By exploring energy efficiency impacts throughout the entire compressed air system, vendors can propose projects resulting in both a larger sale for them and increased financial benefits for their customers, while still meeting capital expenditure guidelines. This “best of both worlds” scenario was evident when a foundry in the Midwest was evaluating options for replacing its steam system used to drive the plant’s forging hammers.
EnSave, an energy auditing company based in Richmond, Vermont, recently performed compressed air audits at two facilities of a leading U.S. steel manufacturer. Both plants are mills that melt, cast, and roll steel to produce a variety of products, including: rebar, merchant bar, steel flats, rounds, fence posts, channel bar, steel channels, steel angles, structural angles and structural channels. These products are used in a diverse group of markets, including: construction, energy, transportation and agriculture. Compressed air is provided at 100 psig in both plants for a variety of applications — from optical sensor cooling to pneumatic cylinders for stacking finished products.
Compressed air use in the metal fabrication industry is widespread. It is used to cool, clean, convey and coat a multitude of products and improve processes across the world. In fact, it is difficult to name processes in metal fabrication where compressed air cannot be found. A few processes where compressed air is used include: annealing and pickling, slitting, rolling, welding, stamping, punching, tube making, painting, finishing, turning, drilling, milling and sawing. Many of these processes and applications continue to use inefficient devices to deliver the compressed air, and — worse yet — many companies fail to recognize the simple implementation and significant payoff of improving compressed air efficiency.
Nissan North America operates on a massive scale. The company’s powertrain assembly plant in Decherd, Tennessee, alone encompasses 1.1 million square feet, and manufactures engines for 14 different vehicles. The facility also handles crankshaft forgings, cylinder block castings, and other machining applications. Over the course of one year, the powertrain plant churns out approximately 1.4 million engines, an equal number of crankshaft forgings, and 456,000 cylinder block castings.
A major Midwestern aluminum plant was experiencing dwindling compressed air capacity, primarily due to air leaks. If those capacity issues went unresolved, the facility would have needed rental compressors to keep up with demand. Instead, they turned to flow metering to identify and fix the leaks. In this article, they share their solutions with others who may be having similar difficulties.
Aeration tanks use bubble diffusers to distribute oxygen within the wastewater. Fine bubble diffusers, or those that produce a large amount of very small air bubbles, first began to become popular in the 1980s, as they had a much higher efficiency than coarse bubble diffusers. Fine bubble diffusers generally feature a membrane that allows airflow to pass from the piping system on the floor of the tank through the body of the diffuser and the membrane, providing oxygen into the wastewater for treatment. 
A replacement strategy for air compressors and blowers integrated into a system-level approach towards energy efficiency can deliver significant energy savings and optimize equipment performance. At the Victor Valley Wastewater Reclamation Authority, a blower replacement project yielded annual energy savings of more than 928,000 kWh and $98,000 in energy costs, while improving the reliability of its secondary treatment process. In addition, the agency qualified for important incentives from its electric utility — significantly improving the project economics and resulting in a 2.94-year payback.