Industrial Utility Efficiency    

Standards

Compressed air is used in more than 70 percent of all manufacturing activities including supplying breathing air to personnel using supplied air respirators. Hazardous breathing conditions exist in many routine industrial operations, such as chemical manufacturing, hospitals, abrasive blasting, paint spraying, industrial cleaning, and arc welding. In these and other operations that introduce contaminants into the workplace, supplied-air respirators, air filtration systems and carbon monoxide monitors are frequently used for worker protection.

ISO and CAGI

Compressed Air Best Practices® (CABP) Magazine and the Compressed Air and Gas Institute (CAGI) cooperate to provide readers with educational materials, updates on standards and information on other CAGI initiatives. CABP recently caught up with Rick Stasyshan, Technical Consultant for the Compressed Air and Gas Institute (CAGI) and with Ian MacLeod, from CAGI member-company Ingersoll Rand to discuss the topic of motors on centrifugal air compressors.

NFPA 99 Medical Air

In the U.S. as an example, the NFPA has taken the view that if your compressor draws in good clean ambient air, the air stays clean through the compressor, is then dried and filtered, when you deliver it to the patient it will be entirely satisfactory. After all, when you went into the hospital that’s what you were breathing and when you leave you will breathe it again!

Energy Management

After almost three and a half years of development work the Canadian Standards Association C837-16 document “Monitoring and Energy Performance of Compressed Air Systems” has finally been published and is available for download.  The work in writing the document was done by a CSA Technical Subcommittee made up of personnel from power utilities and government organizations, compressed air manufacturers and end users from both USA and Canada, with the committee activities facilitated and coordinated by the CSA Group (see list of committee members).

Food Grade Air

Compressed air is a critical utility widely used throughout the food industry.  Being aware of the composition of compressed air used in your plant is key to avoiding product contamination.  Your task is to assess the activities and operations that can harm a product, the extent to which a product can be harmed, and how likely it is that product harm will occur. Assessing product contamination is a multi-step process in which you must identify the important risks, prioritize them for management, and take reasonable steps to remove or reduce the chance of harm to the product, and, in particular, serious harm to the consumer.
Industry standards serve a very important purpose for the end users of compressed air equipment.  If the standards are well written, they can help to promote the equipment that they govern, as long as the equipment manufacturers properly apply and promote the standards.
Compressors in today’s market must meet a variety of standards written by a wide range of organizations throughout the world.   Until recently, most standards were written to deal with safety, both mechanical and electrical, and performance of the individual components of a compressed air system.
The NFPA 99 (National Fire Protection Agency) Standard for Healthcare Facilities (2005 Edition) is the current Code by which Healthcare facilities in the U.S. design their compressed air systems.  The NFPA 99 Standard covers many requirements for medical gases, with compressed air being just a component of the Standard.