Industrial Utility Efficiency    

Compressor Controls

UniFirst is one of North America’s largest workwear and textile service companies. They outfit nearly two million workers in clean uniforms and protective clothing each workday. Founded in an eight-stall garage in 1936, the Company has grown to 240 customer servicing locations throughout the U.S. and Canada servicing 300,000 business customer locations. The subject of this article is an energy-saving Air Demand Analysis (ADA), conducted by Kaeser Compressors, at UniFirst’s centralized 320,000 square foot hub Distribution Center located in Owensboro, Kentucky.
A Canadian fiberglass plant has completed a lengthy compressed air improvement journey and achieved significant efficiency gains by applying “the systems approach.” Along the way, the company ran across many frustrating problems, the solutions to which were only determined after the entire system was monitored holistically using data loggers. The overall compressed air audit led to a reduction in energy usage of 48 percent, yielding savings worth $17,500 per year. The project also qualified for a large utility incentive of $32,000 with a calculated payback of 4.4 years.
One of the statements made in the Compressed Air Challenge’s Fundamentals of Compressed Air Systems seminar is that improvements can always be made to every compressed air system, including new ones. The statement definitely applies to a Canadian pork processing facility built a few years ago. This article is based on a compressed air audit performed two years into the life of a brand new plant. The audit found numerous problems and made recommendations that helped reduce plant compressed air operating costs by 60 percent. 
Ahresty Wilmington Corporation (AWC) was founded in 1988 and is located in Wilmington, Ohio. Currently AWC employs over 900 people with sales totaling $192 million. They have grown steadily, all while continuously improving and staying on the leading edge of technology. AWC is a tier-1 automotive supplier servicing their entire customer base in the United States. AWC has established an efficient and integrated production system that incorporates die-casting, finishing, machining, and assembly operation using just-in-time production methods to provide its customers with quality products at a competitive price.
Compressed air has moved to higher visibility in the energy conservation field, and the buzzwords abound: “the fourth utility” — “your most expensive utility” — “eight times more expensive than electricity” — “a quarter-inch leak costs $9,000 in wasted energy.” This greater awareness has also produced compressed air auditors that are springing up like summer dandelions. With audits available from many sources, it is important to understand what plant operations, engineers and maintenance managers should expect from a complete audit — or more aptly — a complete air system review.
As a reader of this journal, you are well aware that large compressed air systems often have significant wasted air — often from leaks — that represent tens of thousands of dollars of waste per year. However, it is our experience that the so-called “low-cost” measures identified often go un-repaired, while other more costly capital projects get funded. Why? With an ROI of a half year or less, they seem like IQ tests to many compressed air auditors.
There is a partly true idea floating around some plant maintenance circles that “compressed air is free.” Readers of this journal know that isn’t true. But, what if non-compressed air could be seen as “free?” Is there something we can get for free from nature to reduce the cost of our compressed air? What if lower temperature intake air was nature’s gift? What if all we need is a bit of tin to duct air from a different source?
Vale in Thompson, Manitoba, Canada has reconfigured a system of large turbo compressors in their mining, milling, smelting and refining operation and gained very large energy savings through a series of improvement projects. In addition, these projects qualified for some significant financial incentives from their local power utility.  Vale is a large multinational mining company with headquarters in Brazil.  Vale operations focus on the production of iron ore, coal, fertilizers, copper and nickel.  The Thompson Manitoba operations consist of mining, smelting, milling, and refining of Nickel in the 250 acre complex that employs 1,500 people.
A factory expanded their production facilities in response to a new product line being introduced in their plant. The plant was to run as a separate entity with its own utility services. Because this company is very conscientious about their energy consumption, they specified top-of-the-line compressed air production equipment to keep their costs low while maintaining the very clean air quality required by their product. This equipment should have worked wonderfully. Unfortunately, events transpired, and poor decisions were made that pushed their system out of control, resulting in unexpected inefficient compressor operation and higher-than-desired energy consumption.
This article introduces a new and useful compressed air system parameter called the “Compressor System Factor,” or CSF. The CSF of a given system defines the relationship between an air compressor, its system, and how the compressor is being operated. Knowing the CSF of a system allows comparisons to be made between existing operating characteristics and the characteristics of a proposed system. Changing a system by applying energy efficiency measures like adding storage receiver capacity, changing pressure bandwidth, or switching to different compressor control modes also changes the CSF. The results of the change can be easily predicted using the CSF number.
Acrylon Plastics located in Winkler, Manitoba, Canada manufactures an extensive variety of custom plastic parts for a wide range of end use applications. Years ago changes to their production volumes increased the compressed air flows to above what their compressed air system could deliver. As a result the plant pressure would fall to low levels during production peak demands, which negatively affected sensitive compressed air powered machines. In addition to this during light plant loading conditions the air compressors would run inefficiently. Plant personnel tried a variety of strategies to deal with the plant peaks, with the most efficient solution coming as a result of installing VSD style compressors and pressure/flow control.