Industrial Utility Efficiency    


The Ford Motor Company Kentucky Truck Plant (KTP) not only manufactures upscale SUVs and pickup trucks painted in wide variety of stellar, high-quality colors and finishes –  it does so cost-effectively by conserving annual compressed air energy of approximately 9.2 GWh thanks to a major overhaul of the plant’s compressed air system.
A Tier 1 automotive supplier was concerned its compressed air system was not operating as efficiently as it could be. The situation called for a site visit and metering and evaluation of the company’s air compressors to generate a representative data sample that accurately captured the compressed air needs during typical production and non-production periods.
While many businesses strive to plan, install and maintain a compressed air system that fulfils the company’s specific needs, I’ve found that implementing compressed air best practices not only accomplishes specific goals, but also results in time-tested advantages that aid in the overall business and production goals of the organization.
In a strategic approach to improving its management of compressed air, the company initiated an upgrade of its compressed air system at its Midway plant. In so doing, SumiRiko Tennessee saves 2.1 million kWh and $100,000 in energy costs per year at the plant.  Additionally, lower energy use resulted in the reduction in CO2 of 800 tons per year. With a utility rebate, the project paid for itself within two years.
The project, which also involved the addition of a booster air compressor and receiver tank – along with the installation of an important pressure control valve – gives the automaker the ability to run fewer centrifugal air compressors during peak production. In so doing, the plant saves nearly 6.1 million kWh and more than $600,000 per year in energy costs. The project also qualified for a $369,374 rebate from the local utility, resulting in a six-month project payback – all while improving system reliability.
Often, multiple centrifugal air compressors are set up to simply react to air demand, which requires the system to not only meet the new demand, but also make up for air depleted in the main header. This typically results in too much supply, which results in bypassing the air to atmosphere. The result is wasted energy use.
When the 18th Century Italian physicist Giovanni Venturi discovered when air is forced through a conical nozzle its velocity increases as the pressure decreases, neither he nor anyone could conceive it would ultimately spawn one of the most used and most highly controversial products in the industry today- the Venturi vacuum generator (aka, ejector).
Compressed air optimization measures adopted by PTMSB have reduced the consumption of compressed air by 31 percent resulting in savings of about 3,761,000 kWh per year in energy consumption. The monetary savings are MYR 1,090,627 per year ($255,000 USD). The CO2 reduction is estimated at 2,735 ton per year.
As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
Ahresty Wilmington Corporation (AWC) was founded in 1988 and is located in Wilmington, Ohio. Currently AWC employs over 900 people with sales totaling $192 million. They have grown steadily, all while continuously improving and staying on the leading edge of technology. AWC is a tier-1 automotive supplier servicing their entire customer base in the United States. AWC has established an efficient and integrated production system that incorporates die-casting, finishing, machining, and assembly operation using just-in-time production methods to provide its customers with quality products at a competitive price.
Nissan North America operates on a massive scale. The company’s powertrain assembly plant in Decherd, Tennessee, alone encompasses 1.1 million square feet, and manufactures engines for 14 different vehicles. The facility also handles crankshaft forgings, cylinder block castings, and other machining applications. Over the course of one year, the powertrain plant churns out approximately 1.4 million engines, an equal number of crankshaft forgings, and 456,000 cylinder block castings.