Industrial Utility Efficiency    

System Assessment

To address a mandate for cutting operations energy usage at facilities by 25 percent without major capital expenditures, a major manufacturing company set its sites on better control of its compressed air systems.  The project, implemented at 10 manufacturing plants over the course of three years, saves the company $977,093 annually in energy costs – and was completed with zero out-of-pocket costs.

Compressor Controls

By finding a better way to control and manage its compressed air system, North American Lighting, Paris, Ill., has reduced its total compressed air energy use by 27 percent – and in the process – saves over 1,100,000 kWh/year for a total annual savings of $91,000. The project also achieved a payback of less than one year.

Piping Storage

Replacing unreliable air compressors is often a smart choice. Sometimes there is a better one. Take the case of a wallboard plant with two compressed air systems, including one for its board mill and another for its rock mill. Each had two 100 horsepower air compressors, all of which constantly overheated. When they did, plant personnel had to scramble to turn on a machine manually every time a unit shut down. Three units ran the plant so any shutdown had them walking on pins and needles.

End Uses

On a recent project, at a polyethylene terephthalate (PET) blow-mold and filling operation, a very effective measurement plan resulted in a full synchronization of the supply side air to blow molds with significant reduction in total air use and increases in productivity and quality.  

Pressure

Whenever we start a compressed-air energy survey there are always two key topics plant personnel feel are paramount – leaks and reducing pressure. In this installment of our series on missed demand-side opportunities we’ll address the importance of compressed air system pressure.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.

Leaks

Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.

Pneumatics

Machines for filling milk or juice must often work around the clock. Given the critical importance of uptime, Elopak opted for Aventics food-compliant pneumatics when developing its E-PS120A - the first fully aseptic filling machine for gable top packaging. With an output of up to 12,000 cartons per hour, disruptions and downtime are not welcome with the aseptic filling machine.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
On a recent project, at a polyethylene terephthalate (PET) blow-mold and filling operation, a very effective measurement plan resulted in a full synchronization of the supply side air to blow molds with significant reduction in total air use and increases in productivity and quality.  
By finding a better way to control and manage its compressed air system, North American Lighting, Paris, Ill., has reduced its total compressed air energy use by 27 percent – and in the process – saves over 1,100,000 kWh/year for a total annual savings of $91,000. The project also achieved a payback of less than one year.
A food processor in Western Canada hired an auditor to assess the energy efficiency of its compressed air system. The results revealed surprises about the operation of some important elements of the system, and detected that the air compressors were having control gap problems. Additionally, the audit led to initial energy savings of $20,000 – and identified the potential to achieve overall operational savings of 45%. The following details some of the audit findings and results.
Machines for filling milk or juice must often work around the clock. Given the critical importance of uptime, Elopak opted for Aventics food-compliant pneumatics when developing its E-PS120A - the first fully aseptic filling machine for gable top packaging. With an output of up to 12,000 cartons per hour, disruptions and downtime are not welcome with the aseptic filling machine.
Whenever we start a compressed-air energy survey there are always two key topics plant personnel feel are paramount – leaks and reducing pressure. In this installment of our series on missed demand-side opportunities we’ll address the importance of compressed air system pressure.
The University of Manitoba Bannatyne Campus, Canada, upgraded its compressed air system to include variable speed drive (VSD) air compressors and the use of internal heat-of-compression (HOC) drying, replacing oil-free air compressors and refrigerated dryers that reached the end of useful life. In doing so, the campus reduced annual energy consumption by 15%, improved the quality of the compressed air to modern day instrument air standards and gained additional compressed-air capacity. The local utility also awarded the medical campus an incentive of $13,500, offsetting the cost of the initiative.  
Replacing unreliable air compressors is often a smart choice. Sometimes there is a better one. Take the case of a wallboard plant with two compressed air systems, including one for its board mill and another for its rock mill. Each had two 100 horsepower air compressors, all of which constantly overheated. When they did, plant personnel had to scramble to turn on a machine manually every time a unit shut down. Three units ran the plant so any shutdown had them walking on pins and needles.
Air Operated Double Diaphragm (AODD) Pumps are popular and versatile. Often, they also offer an excellent opportunity to lower the demand for compressed air, especially given the latest advances in controls and the energy savings to be realized.
As many well know, system measurement is essential to ensuring a compressed air system is running efficiently and effectively, with good air quality and adequate pressure.  This is also well understood by a multi-national food company (name has been withheld to protect the innocent) who started a focused effort to measure and improve their compressed air systems in their many processing plants worldwide. 
Chicago Heights Steel, Chicago Heights, Ill., leveraged an advanced data monitoring system and adopted a demand-based compressor air management approach to save 2.5 million kWh and $215,037 per year in energy costs. With an incentive of $188, 714 from local utility ComEd, the project delivered a payback of 2.4 months.