Industrial Utility Efficiency    

Compressor Controls

It was early summer, the air compressors were above the production floor on a mezzanine, and temperatures were heating up both outdoors and indoors. The compressed air system was comprised of three 500-horsepower centrifugal air compressors, and one 350-horsepower variable speed drive oil-free rotary screw air compressor.
To improve the delivery of compressed air at the plant, which is supplied by low-pressure and high-pressure compressed air systems, the manufacturer took an important first step by using airflow meters to monitor and measure the performance of both systems. Subsequent planning based on actionable data led to a unique compressed air system upgrade that increases the plant’s ability to maintain peak production of high quality glass bottles and containers at all times – while saving $150,000 per year in energy costs. The project also delivered a payback of less than two years.  
Advances in phone technology dramatically improve their function and our experience. More storage, faster speeds, enhanced communication options, bigger and brighter display….and so on. As a result, today’s phones are significantly more powerful – improving our productivity and changing our lives. As for the technology laggards, obsolescence eventually prompts change. Repairing or replacing parts and accessories on the old phones is an increasing challenge. Eventually they have to succumb to technology.
Companies will experience periods of increased production, as well as periods of slower or stopped production. It’s the nature of being in business. Understanding the implications of these business shifts for compressed-air installations (the powerhouse behind a facility’s production) is key for ensuring that air compressors remain functional and efficient. Here are guidelines to ensure your facility’s compressed-air system operates at top performance, no matter the speed of production.
A Tier 1 automotive supplier was concerned its compressed air system was not operating as efficiently as it could be. The situation called for a site visit and metering and evaluation of the company’s air compressors to generate a representative data sample that accurately captured the compressed air needs during typical production and non-production periods.
Here’s a review of changes taking place with the continued evolution of remote monitoring of air compressor systems and how the technology stands to improve compressed air maintenance –while adding to the bottom line.
Air compressors need to be matched to load effectively and efficiently. If the air compressors’ range of variation can’t be matched to the system variation, instability and/or inefficiency can result. This article discusses the problem when it isn’t matched, which is called “control gap” and what to do to avoid it.
By making changes primarily focused on compressed air uses, Winpak, an international plastics products manufacturer based in Winnipeg, Manitoba, Canada, increased compressed air production capacity and reduced annual energy consumption by 33%. These benefits have been accomplished while the company was making the switch to lubricant-free compressed air to support product quality goals. This article discusses some of these changes and addresses measures that could be implemented in any compressed air system.
Have you ever wondered how to stay “in control” of an engineering organization with a fixed staff and a varying workload, where the engineers all have a mind of their own? “Herding cats” is what they call it.  Of course, that’s normal, right? Well, controlling multiple centrifugal air compressors is pretty close to that model, which can lead to a condition known as “control gap.”  This article discusses the reasons for control gap with centrifugal air compressors and solutions to help avoid it.
Like any system, to properly manage compressed air equipment some measurements have to be taken. Typically, some sort of data logging equipment is installed to measure various pressures, amps or power, flow, and sometimes temperatures and dewpoints. Placing this equipment on a system is like putting an electrocardiograph machine on a human heart, the heartbeat of the compressed air system in a plant can be analyzed to determine if everything is normal or if there is a problem, all without interrupting the system. 
The 2019 AEE World Energy Conference and Expo was held September 25-27 at the Walter E. Washington Convention Center in Washington D.C. The event featured 14+ tracks, 56 sessions, over 260 individual speakers, and 62 exhibitors.  Both Chiller & Cooling Best Practices and Compressed Air Best Practices® Magazines were pleased to be in the literature bins at the 2019 AEE World!