Industrial Utility Efficiency    

Technology

Among the many “systems” plant personnel are concerned with, the compressed air system often provides the biggest opportunity for improvement and overall savings. There are many manufacturers and several air compressor technologies to choose from. Reciprocating or rotary? Fixed speed or variable speed? Oil flooded or oil free? Single-stage or two-stage technology? It’s enough to make anyone want to run and hide!

Air Compressors

Properly sizing a compressed air system can help determine if your facility has enough air to adequately supply your production equipment. Designing a cost effective system that minimizes any interruptions to productivity requires thoughtful planning and design. Typically, the desired outcomes of such a system focus on stable pressure and efficient operation, though it is important to note that each of these elements requires a unique solution. This article will provide guidance in proper selection considerations and suggest when a centrifugal air compressor may be ideal for your needs.

Air Treatment

The foundation of any purification system is its filtration and of the ten main contaminants found in a compressed air system, filtration is responsible for the treatment of nine of them. Coalescing filters are the most important piece of purification equipment as they reduce six of the ten contaminants and a look in any air compressor room will find a pair of coalescing filters (backed up with dry particulate and oil vapor removal filters).

Blowers

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

Companies will experience periods of increased production, as well as periods of slower or stopped production. It’s the nature of being in business. Understanding the implications of these business shifts for compressed-air installations (the powerhouse behind a facility’s production) is key for ensuring that air compressors remain functional and efficient. Here are guidelines to ensure your facility’s compressed-air system operates at top performance, no matter the speed of production.

Instrumentation

Wherever compressed air is used, accurate and continuous monitoring of the dew point temperature is advisable. The dew point provides information about the absolute humidity content of the compressed air. A too high humidity content can have negative effects on the quality of the final product, lead to problems during the manufacturing process, or even result in complete system shutdown. Therefore, operators of compressed air systems should address this issue before it causes serious and costly issues. The following explains the basics of dew point measurement and what is important in practice.

Pneumatics

In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.
Compressed air contamination can come in various forms, including particles, water, oil, and microorganisms. Non-viable particle contamination is specified in ISO 8573-4:2019 as one of the major contaminants in compressed air to be monitored. Troubleshooting particle contamination with Laser Particle Counters (LPCs) is the focus of this article.
For many installations of industrial air dryers, a dilemma can occur when trying to achieve the correct balance between desired specifications and efficiency in the applications. Sometimes there is no way around a requirement to achieve ultra-dry dew points, but are we always considering the point-of-use needs when implementing a dry air solution? Often the dry air system is configured with one end goal in mind which is dry air but doing so without accounting for the point-of-use factors that can lead to added expenses and wasted energy.  
Dew point is simply the temperature to which air must be cooled for the water vapor within to condense into dew or frost. At any temperature, there is a maximum amount of water vapor that the air can hold. This maximum amount is called the water vapor saturation pressure. If more water vapor is added beyond this point, it will result in condensation.
For an organization to prove that it meets the standard it has to undergo a management system audit, either internal or external. The question, therefore, is how can those utilizing compressed air effectively evaluate their assets’ performance as part of an ISO 50001 energy management system and, in doing so, grow their bottom line and minimize their negative environmental footprint.
In the field of externally heated adsorption dryers there is a large variety of different systems on the market offering substantial flexibility in terms of process flows, dew points and energy demand. Often, economic parameters and project-specific requirements ultimately define the individual user-specific solution. This article discusses the basic types of desiccants used in compressed air dryers.
Electricity and compressed air play an important role in the thermal and kinetic processes for everything from mixing and extruding the ingredients, deep-freezing to -13°F (-25°C), dipping into various chocolate coatings through to final packaging. Energy efficiency is therefore right at the top of Unilever’s list of priorities. As part of the Unilever Sustainable Living Plan, this global corporation has succeeded in saving more than $186 million in energy costs from efficiency improvements in production alone since 2008.
To improve the delivery of compressed air at the plant, which is supplied by low-pressure and high-pressure compressed air systems, the manufacturer took an important first step by using airflow meters to monitor and measure the performance of both systems. Subsequent planning based on actionable data led to a unique compressed air system upgrade that increases the plant’s ability to maintain peak production of high quality glass bottles and containers at all times – while saving $150,000 per year in energy costs. The project also delivered a payback of less than two years.  
Advances in phone technology dramatically improve their function and our experience. More storage, faster speeds, enhanced communication options, bigger and brighter display….and so on. As a result, today’s phones are significantly more powerful – improving our productivity and changing our lives. As for the technology laggards, obsolescence eventually prompts change. Repairing or replacing parts and accessories on the old phones is an increasing challenge. Eventually they have to succumb to technology.
Varnish is a leading cause of airend failure in oil-flooded/injected rotary-screw air compressors. The purpose of this article is not to cover every scenario conducive to varnish formation, but to point out that many factors need to be considered when it occurs, and methods are available for its detection. Ultimately, it’s up to both the oil manufacturer and maintenance professional to ensure the oil used is up to the task of resisting varnish and maximizing air compressor performance and life.   
In an ever-evolving world of regulations, requirements, and legal ramifications, it can be all too easy to want to cover all the bases by adding a wide range of industry codes and standards to any project being put out for bid. Many assume that if the purchased equipment meets all the requirements of every developed code and standard then surely it will be a reliable and safe machine to operate with the best performance and energy efficiency. However, many of these codes and standards are developed with a tremendously broad range of machinery and equipment in mind and they may not always fit well with the specific project being developed. Compliance to these codes and standards may require very costly modifications to a manufacturer’s standard product for little to no real benefit.