Industrial Utility Efficiency    

Cooling Systems

A large manufacturer of consumer glassware products in the North East sought a solution for injecting cold compressed air into its refractory furnace. Doing so would minimize the internal corrosion thereby extending the life of the furnace lining and their annual maintenance interval. The manufacturer opted for a unique solution from Aggreko Engineering featuring a rental, oil-free rotary screw air compressor combined with a heat exchanger and chiller.  Installed in 2019, the solution is expected to save the company $9 million monthly given the ability to maintain extend furnace maintenance from one year to two years – and boost plant uptime.
The Best Practices EXPO & Conference held from October 13-16, 2019 in Nashville, Tennessee, saw a significant increase in attendance growing by 15 percent to 850 attendees from 20 countries. End user (factory personnel) attendance grew by 60 percent! The EXPO was also truly international showcasing 115 exhibitors from 16 countries and EXPO attendance was free for qualified industry personnel. This SHOW REPORT EXTRA Part 2 complements our 2019 Best Practices EXPO & Conference Show Report and the Show Extra Part 1 Report. 
The event brought together technology experts, systems assessment professionals, and manufacturing leaders – all of whom shared best practices and ideas manufacturing plants can use to save energy, improve sustainability initiatives and increase the overall reliability and quality of on-site utilities.
Held September 16-19, 2018 in Chicago, the first-ever event drew 750 attendees who came together to learn and share ideas about the countless ways to achieve efficiencies with compressed air, blower, vacuum and cooling systems – and in the process – save energy and improve profitability.
As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
As the population continues to grow in the United States, industrial water use will need to continue to fall to help offset the increases in public-supply water use. Water-cooled compressed air systems provide an opportunity for sustainability managers to reduce associated cooling water consumption and costs. If switching to air-cooled air compressors is not possible, understanding the costs and the alternative types of liquid cooling systems is important.
There are several pieces of information that your cooling system specialist will need in order to properly engineer and build a cooling system for your new air compressor. There are many types of air compressors and each has different requirements of the cooling system in order to operate correctly. This article will take the mystery out of some of the terms and specifications for your cooling system.
There are six basic types of cooling systems that you can choose from to meet the cooling needs of your load. Each one has its strengths and weaknesses. This article was written to identify the different types of cooling systems and identify their strengths and weaknesses so that you can make an informed choice based on your needs.
Compressed air systems are present in almost all industrial processes and facilities. They have been correctly identified as an area of opportunity to reduce electrical (kW) energy costs through measures like reducing compressed air leaks and identifying artificial demand and inappropriate uses. Water-cooled air compressors can also be significant consumers of water and reducing these costs can represent a second area of opportunity.
Temperature control of the musts during the fermentation process is required for the production of high quality wines. Alcoholic fermentation is the chemical reaction in which yeast is used to transform the natural sugars of the fruit into alcohol. The heat generated by this exothermic reaction has to be managed. If must temperatures are allowed to reach the 85°F to 105°F range the reaction will be stopped. This results in high sugar content and an unstable product that requires the addition of sulphur dioxide (SO2) to allow it to be stored without spoiling. In general, optimal fermentation temperatures are 65°F - 68°F for white wines and 77°F for red wines.
Industrial plants are major consumers of water. Water is used in many processes. Sustainability projects focus on reducing the consumption of water and the energy-costs associated with cooling water so it may be effectively used.