Industrial Utility Efficiency    

System Assessment

Many are familiar with the advances with improved technology in the compressed air supply. Such advancements as, proactive central air compressor controls to maintain optimum operation of multiple compressors to support ever changing air demands; improved drive systems such as VSD’s; magnetic bearing drives (centrifugals); and more efficient and reliable equipment taking advantage of modern manufacturing capability. These new technologies are very important in generating relative high energy cost savings, and are well promoted by the OEM equipment manufacturers.

Compressor Controls

This article is going to identify two air compressor control situations that will preclude translating air use reduction in the production area into lower input energy into the air compressor.

Piping Storage

One of the most common problems in plants is low air pressure. One of the most common solutions is to purchase new air compressors. Often this advice leads to a poor return on investment with the company’s hard-earned money. Often the issues are related to demand, distribution, or both. Solving the wrong problem can be expensive from a capital and operating cost perspective. Determining root cause analysis may cost more up front, but will save tens if not hundreds of thousands of dollars long term.

End Uses

In this series we covered some very common issues in the Compressed Air Generation or “Supply Side” with regard to misapplying some capacity controls and installing different types of air compressors with piping and/ or orientation. These can preclude any reduction in compressed air demand on the production side from effectively translating lower air usage into a commensurate level input energy.


A pharmaceutical plant, has had a compressed air assessment performed on two plant systems.  The studies uncovered poor compressed air production efficiency, high air dryer loss, and problems with high flow compressed air uses negatively affecting plant pressure. The plant implemented energy efficiency measures, on the two compressed air systems, saving 46 and 64 percent in energy costs respectively.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.


Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.


A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at $0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.  

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
A large mining complex in a remote northern region of the world invited a compressed air auditor in to assess the efficiency of a problematic system. Site personnel and their air compressor supplier were concerned a system in one of the buildings was not running optimally, and wanted to know what size of compressor to install in the facility. The auditor found significant savings in this target system, but even larger potential savings were found in other ancillary systems in the complex, as part of an extra investigation conducted while at the site. Overall, the potential energy savings total more than half of a million dollars, if all recommendations are implemented.
A zinc producer spends an estimated $516,000 annually on electricity to operate the air compressors in a compressed air system at its north American plant.  The current average electric rate, at this plant, is 5 cents per kWh, and the compressed air system operates 8,760 hours per year. This system assessment recommended a group of projects able to reduce these energy costs by fifty-one percent (51%) to an annualized $270,000.  The simple payback of the project was 15 months – without taking into account potential incentive dollars from the local utility.
Great Plains has carved a global reputation for producing world-class seeding equipment since it first opened its doors in 1976. Great Plains manufactures a range of products from grain drills and planters, to compact drills and tillage equipment. They have established an international business built on expertise, knowledge and a commitment to producing products meeting the rigorous demands of the agricultural sector.
A meat processor, located in Canada, hired a consultant to assess their compressed air system as part of a company-wide energy conservation effort. The assessment and analysis showed, despite having a modern compressed air system using a VSD air compressor and pressure/flow control, the system was running inefficiently and had significant levels of leakage and inappropriate use.
While late summer may not be the time of year many of us think about heat recovery, the potential for energy savings in compressed air systems should be on our minds year-round. For those involved with the compressed air systems within International Wire Group’s facilities, energy savings is on their minds each day. This culture of continuous improvement has everyone on the lookout for savings wherever possible.
A steel distribution and processing company has upgraded and consolidated the compressed air systems in two of their distribution and processing facilities for big energy savings. The previous compressed air systems were running in modes of operation with very low efficiency. A complete replacement of the two systems with new air compressors and dryers has reduced the energy consumption significantly.
Load-sharing is an important part of a multiple centrifugal-compressor master control system. It minimizes blow-off based on the available turn-down. In addition, remote start-stop saves more energy if load floats between different ranges. Finally, adding a screw compressor and implementing a hybrid control system might save the most energy and provide the best back-up. In any case, a well-instrumented system allows engineers and operators to assess, optimize and tune the system.
An electronics manufacturer with a very large compressed air system recently had a compressed air audit done in their plant to assess system efficiency. The audit discovered the system had been designed to be extremely efficient, yet some previously undetected problems were causing less than optimal operation. Despite being located in a tropical environment, this plant utilizes heat recovery to help reduce the overall energy consumption.
This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.
When a system has the right combination of VFD and base-load air compressors, how do you coordinate their control? What tells the air compressors to run and load, to have just enough (or no) base-load air compressors and a VFD running, all the time air is needed? Appropriate master controls are needed. These controls are often called “sequencers” or “master control systems”.