Industrial Utility Efficiency


During Dealer Week, they needed enough compressed air to power multiple machines at a time all day long. Keeping simultaneous demos running for all their top machines required airflow of up to 400 cubic feet per minute (CFM). However, outside of Dealer Week, their compressed air demands were quite modest. On a typical day, they only needed 20 CFM to power their dust collection system and pneumatic tools for their dock and warehouse crating areas. 

Use Baseline Measurements to Improve Compressed Air Supply Performance

Baseline measurements include flow, power, pressure, production output, and other relevant variables impacting compressed air use. These data evaluate trending averages to develop Key Performance Indicator (KPI) and Energy Performance Indicator (EnPI) parameters and establish base‑year performance. The focus of this article is the application, evaluation, and analysis of baseline measurements to provide information necessary to improve Compressed Air Supply Efficiency.

Chemical Packaging Plant Shaves 41% Off Annual Electric Bill with Compressed Air Energy-Saving Measures

A chemical packaging facility had done everything right when they last upgraded their compressed air system a few years ago. They installed a Variable Speed Drive (VSD) air compressor and implemented other energy efficiency measures, but plant expansions caused increased system demand, which exceeded the capacity of the system. The packaging lines were now seeing low pressure, causing shut downs in production. And projections showed plant demand would increase even further.

Instrument Air and Breathing Air at a Pharmaceutical Plant

A pharmaceutical plant, has had a compressed air assessment performed on two plant systems.  The studies uncovered poor compressed air production efficiency, high air dryer loss, and problems with high flow compressed air uses negatively affecting plant pressure. The plant implemented energy efficiency measures, on the two compressed air systems, saving 46 and 64 percent in energy costs respectively.

Low-Pressure Air Compressors Deliver Savings for Lafarge Cement Distribution

The Lafarge Cement Distribution terminal located in Winnipeg, Canada has significantly reduced the site electrical demand and energy charges by changing the way they transport their cement.  Two new low-pressure rotary screw air compressors have replaced two large high-pressure air compressors that previously powered their dense phase transport system.  The resulting power reduction has saved the company 46 percent in transport operating costs.

Four Principles for Sustaining Energy Savings

When Compressed Air Consultants was starting, in 2003, we were approached by a company experiencing significant problems with their compressed air system.  They had compressed air pressure problems causing production interruptions.  They had moisture issues causing all kinds of havoc throughout the facility and appeared to be using far too many air compressors for what they wanted to accomplish. 

Managing Pressure Regulator Artificial Demand, Part 1

Pressure regulators are everywhere compressed air is used. These simple devices, essential for safe and steady equipment operation, can be a big waster of compressed air. This article shows how with proper regulator selection, installation and setting management you can save compressed air and lower system pressures. This article looks at regulators on production equipment not central regulators or Process Flow Controllers.

Systems Approach Cuts Fabric Mill Energy Costs

A large fabric mill has implemented an energy management system based on the ISO 50001 standard to track their compressed air system efficiency.  As a result of information gained from this system, and measures learned in some recent compressed air training, the company has reduced their compressed air system costs while at the same time achieving increased fabric production output. The savings were gained by not only optimizing the supply side of the system, but by also addressing the end uses.

Oversized Dryer Causes Pressure Issues at a Chemical Plant

A Canadian chemical plant installed a large heated blower-purge style compressed air dryer, years ago, to condition the instrument air system against freezing temperatures.  The dryer selected was oversized for the connected air compressors and had unused on-board energy savings features.  A compressed air assessment revealed the site air compressors and compressed air dryers were running inefficiently and causing in-plant pressure problems.  Repairs to a compressed air dryer and the replacement of aging air compressors and dryers has reduced compressed air energy costs by 31 percent.

Innovative Blow Molds Reduce Compressed Air Pressure in PET Blow Molding

Technological trends in plastics manufacturing are driving the costs of production down. In industrial PET blow molding specifically, two innovative techniques have had major impacts over the last 15 years: “light weighting” the plastic bottles, and recirculating high-pressure compressed air. Both have helped to improve the energy efficiency of PET blow molding by reducing compressed air requirements dramatically.