Industrial Utility Efficiency

System Assessments

Given that compressed air leak management programs are meant to save energy, reduce CO2 emissions, and generate ROI, DENSO’s Maryville, Tennessee, manufacturing facility can definitively say it has scored a trifecta when it comes to results – and reaped benefits beyond hard numbers alone.

The Importance of Bi-directional Compressed Air Flow Measurement

Technology is available which enables a compressed air flow meter to measure not only the magnitude of the flow, but also the direction. Why is this important? In this article we will describe two case studies where bi-directional compressed air flow measurement plays a key role to come to the right conclusions. In the first case study, we will describe an electronics manufacturing plant, which has a large interconnected ring network with two air compressor rooms located in different buildings. The two air compressor rooms are about five hundred feet apart. In the second case study, the effect of compressed air flow measurement upstream of a local receiver tank is described.

Sparks Dynamics Optimizes NIST Compressed Air System

The objective of this project is to help the building automation industry develop novel products that more cost-effectively identify faults (unwanted conditions) and inefficiencies in the operation of the compressed air plants of industrial facilities.  More cost-effective fault detection and diagnostics (FDD) products can come to the building automation marketplace only after that industry makes very significant advances in the state-of-the-art of its FDD software tools from what it currently offers.  Those advances require making common practice of rules-based artificial intelligence (AI) methods that the building automation industry has shown little to no familiarity with in its technology so far.  This project will utilize, under controlled conditions, the compressed air plant of the NIST campus as a facility for test and development of an embedded rules-based FDD tool based upon NIST expertise.

German Lab Relies upon Water-injected Oil-free Air Compressor

Rotary screw air compressor that makes its own lubricant from the surrounding air delivers oil-free compressed air to an environmental laboratory in Stuttgart, Germany -

Many sensitive sectors of industry require oil-free compressed air. However, meeting this demand is often not as simple as it sounds. One way is to use oil-injected air compressors with downstream air treatment to meet the demand. A second option is oil-free air compressors, which operate without lubricants. Both versions have their own advantages as well as risks. Another alternative is to use rotary screw air compressors that use water as a lubricant.

Control Panel Cooling Change Saves Compressed Air Electrical Costs

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.

Packaging Company Receives More Than Just Backup Air

When a successful Midwestern United States-based packaging company reached out to Cleveland, Ohio-based Diversified Air Systems, Inc. (Diversified), it was simply looking to fulfill its need for backup air. Compressed air is a vital component of the packaging company’s business, used for a variety of purposes, such as in its corrugating machines, conveyors, actuators, and more. In the end, the company received much more than just air redundancy, including a new variable speed drive, two-stage air compressor, a completely reconfigured and upgraded piping system, improved system efficiencies, energy savings, and a significant energy rebate.

ELGi Compressors USA at HAECO Americas

In aerospace manufacturing, tiny details matter most. For instance, if proper torque is not applied to the screws and bolts fastening an aircraft fuselage, catastrophic failures can result. Compressed air is used to power the tools needed to apply that torque, making the compressed air system a critical part of the facility, though it largely stays behind the scene.

A Compressed Air Piping System Assessment

During an Energy Review at a relatively new health care garment factory, in the Southwest, we found all three of the 100 psig nominally rated rotary screw air compressors were operating at 115-120 psig continuously. We asked the Production Superintendent if this was normal or if something had recently changed. He explained that initially they operated two air compressors but had to begin running the 3rd unit in ‘trim’ mode after some converting machines were up-graded. Then, a new larger converting machine was recently installed and air pressure quickly became a production issue. Since capital funds were tight, the project engineering team determined the third air compressor had sufficient capacity.

 

Lantech Case Erectors Engineered for Compressed Air Efficiency

Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Pneumatic vs. Electric Tool Calculations and Considerations

Figuring out the energy savings for the switch from pneumatic to electric tools requires an estimate of energy use for each case. The effect of replacing a few tools in a large compressed air system may be too small to detect using power monitoring on the air compressors. However, it is still a good practice, and when part of a larger program to reduce air consumption, the combined efforts will amount to something measurable. Another positive aspect may be that reduced compressed air use frees up needed air compressor capacity.

Systems Approach Cuts Fabric Mill Energy Costs

A large fabric mill has implemented an energy management system based on the ISO 50001 standard to track their compressed air system efficiency.  As a result of information gained from this system, and measures learned in some recent compressed air training, the company has reduced their compressed air system costs while at the same time achieving increased fabric production output. The savings were gained by not only optimizing the supply side of the system, but by also addressing the end uses.

Compressor Controls

As part of its ongoing corporate initiative to find ways to reduce its energy bills, and the costly

Piping Storage

Blowing a jet of compressed air at an object is a common but “poor” use of compressed air. Often

End Uses

Without compressed air monitoring, up to 30% of the compressed air generated goes to waste. This

Pressure

During Dealer Week, they needed enough compressed air to power multiple machines at a time all day

Air Treatment/N2

Over the last two decades, there has been a significant increase of manufacturing facilities

Leaks

A significant manufacturing operation, in the U.S. Midwest, had successfully deployed a compressed

Pneumatics

If there was ever a place where manufacturers can save energy using compressed air and make

Vacuum/Blowers

A ‘Process’ application, is one where it’s all about controlling the contents of a vessel, pipeline