Industrial Utility Efficiency

System Assessments

Given that compressed air leak management programs are meant to save energy, reduce CO2 emissions, and generate ROI, DENSO’s Maryville, Tennessee, manufacturing facility can definitively say it has scored a trifecta when it comes to results – and reaped benefits beyond hard numbers alone.

Managing Dust Collectors in Cement Production

Cement production facilities have a significant number of dust collectors. Many have continuing problems with short bag life and low-pressure problems at the further points from the central air system. They often run on timers. When they try to run on demand control, they often get extreme short cycling, which causes even more bag problems. Most have gauges at the entry, on at least half of the dust collectors, and the compressed air feed lines are always the same size as the connector opening. This article reviews where these problems come from and provides some troubleshooting ideas.

Four Areas to Look for Energy Savings in Compressed Air Systems

Compressed air is often overlooked in energy studies. For those willing to look, however, it is a land of opportunity. Since it takes about 8 hp of electrical energy to produce 1 hp worth of work with compressed air, it is also particularly rewarding to evaluate and optimize the compressed air system in your facility. In this article, we evaluate four specific areas of a compressed air system that can provide significant energy savings.

Maximizing Dust Collection System Efficiency

In this article, we review the operating principles of both basic types of pulse-jet dust collectors — bag (sock), and reverse flow filter. We then examine the effects of various installation and accessory selection issues through several case studies, providing examples of how to fix the issues and optimize the system’s compressed air use.

Vale Thompson Turbo Compressor Upgrades

Vale in Thompson, Manitoba, Canada has reconfigured a system of large turbo compressors in their mining, milling, smelting and refining operation and gained very large energy savings through a series of improvement projects. In addition, these projects qualified for some significant financial incentives from their local power utility.  Vale is a large multinational mining company with headquarters in Brazil.  Vale operations focus on the production of iron ore, coal, fertilizers, copper and nickel.  The Thompson Manitoba operations consist of mining, smelting, milling, and refining of Nickel in the 250 acre complex that employs 1,500 people.

The Challenges of Auditing Compressed Air in Chemical and Petrochemical Plants

Compressed air audits for chemical and petrochemical plants have many characteristics in common with audits in other industries, but there are some differences in the way these businesses run that impact the goals of the typical audit and how that audit is conducted. In chemical and petrochemical facilities, the reason for auditing the demand side is different than that of other industries. Additionally, there are frequently applications with opportunities for improvement that are not always seen in other industries.

 

A Systems Approach Helps Rockline Industries Retrofit a Compressed Air System

Rockline Industries is one of the largest global producers of consumer products, specializing in wet wipes and coffee filters. The company contacted the Arkansas Industrial Energy Clearinghouse after identifying that the compressed air system in their Springdale, Arkansas facility was a potential source of significant savings. Experts from the Clearinghouse then began working with Rockline Industries, representatives of the electric utility, and a local compressed air vendor to perform a complete evaluation of the system.

Growing Factory Experiences Air Compressor Control-Gap Issues

A factory expanded their production facilities in response to a new product line being introduced in their plant. The plant was to run as a separate entity with its own utility services. Because this company is very conscientious about their energy consumption, they specified top-of-the-line compressed air production equipment to keep their costs low while maintaining the very clean air quality required by their product. This equipment should have worked wonderfully. Unfortunately, events transpired, and poor decisions were made that pushed their system out of control, resulting in unexpected inefficient compressor operation and higher-than-desired energy consumption.

The Final Cost is Determined by How Compressed Air is Used

Corporate announces it is participating in the ISO 50001 Energy Management certification program and issues the edict to all itsmanufacturingfacilitiesto come up with plan to reduce energy consumption by 25%. Plant management calls a meeting to discuss how this ambitious goal can be met. Since energy is one of the largest controllable components in a compressed air system, the group decides to start there. Arecentsupply side assessment conducted in conjunction with a compressed air specialist confirmed the compressors are energy hogs. Based upon the analytical simulation run by the specialist, a recommendation was made to upgrade the compressor network with a System Master Control. The project is moving forward making it good starting point in the overall energy reduction plan. What next?

Acrylon Plastics Optimizes Compressed Air Supply

Acrylon Plastics located in Winkler, Manitoba, Canada manufactures an extensive variety of custom plastic parts for a wide range of end use applications. Years ago changes to their production volumes increased the compressed air flows to above what their compressed air system could deliver. As a result the plant pressure would fall to low levels during production peak demands, which negatively affected sensitive compressed air powered machines. In addition to this during light plant loading conditions the air compressors would run inefficiently. Plant personnel tried a variety of strategies to deal with the plant peaks, with the most efficient solution coming as a result of installing VSD style compressors and pressure/flow control.

Retrofitting a Compressor with a VFD and Master Controls

As readers of this publication know, there are many ways to save energy in industrial compressed air systems. One common supply side technology is the variable frequency drive (VFD) of the compressor. It is well-documented that positive-displacement compressors with VFDs provide cost-effective savings in comparison to inlet modulating, load-unload, and variable displacement control.

Compressor Controls

As part of its ongoing corporate initiative to find ways to reduce its energy bills, and the costly

Piping Storage

Blowing a jet of compressed air at an object is a common but “poor” use of compressed air. Often

End Uses

In this article, we will provide detail on the characteristics of the baseline system and then

Pressure

During Dealer Week, they needed enough compressed air to power multiple machines at a time all day

Air Treatment/N2

Over the last two decades, there has been a significant increase of manufacturing facilities

Leaks

Given that compressed air leak management programs are meant to save energy, reduce CO2 emissions,

Pneumatics

If there was ever a place where manufacturers can save energy using compressed air and make

Vacuum/Blowers

A ‘Process’ application, is one where it’s all about controlling the contents of a vessel, pipeline