Industrial Utility Efficiency    


Among the many “systems” plant personnel are concerned with, the compressed air system often provides the biggest opportunity for improvement and overall savings. There are many manufacturers and several air compressor technologies to choose from. Reciprocating or rotary? Fixed speed or variable speed? Oil flooded or oil free? Single-stage or two-stage technology? It’s enough to make anyone want to run and hide!

Air Compressors

Properly sizing a compressed air system can help determine if your facility has enough air to adequately supply your production equipment. Designing a cost effective system that minimizes any interruptions to productivity requires thoughtful planning and design. Typically, the desired outcomes of such a system focus on stable pressure and efficient operation, though it is important to note that each of these elements requires a unique solution. This article will provide guidance in proper selection considerations and suggest when a centrifugal air compressor may be ideal for your needs.

Air Treatment

Air compressors can produce a lot of water. Humidity in ambient air, once compressed, results in much of this water falling out, which we know as condensate. On a warm and humid summer day with inlet air temperatures of 80 oF, a 75-horsepower (hp) air compressor running fully loaded can produce over 25 gallons of condensate in just one eight-hour shift, with another five gallons being produced once the compressed air is sent through a dryer. The compression process allows for the air, water vapor, and lubricating fluids to mix. Once the condensate leaves the system, trace amounts of lubricant travel with it. This condensate should be processed through an oil-water separator before being discharged to groundwater or wastewater treatment plants.


The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

Companies will experience periods of increased production, as well as periods of slower or stopped production. It’s the nature of being in business. Understanding the implications of these business shifts for compressed-air installations (the powerhouse behind a facility’s production) is key for ensuring that air compressors remain functional and efficient. Here are guidelines to ensure your facility’s compressed-air system operates at top performance, no matter the speed of production.


Like any system, to properly manage compressed air equipment some measurements have to be taken. Typically, some sort of data logging equipment is installed to measure various pressures, amps or power, flow, and sometimes temperatures and dewpoints. Placing this equipment on a system is like putting an electrocardiograph machine on a human heart, the heartbeat of the compressed air system in a plant can be analyzed to determine if everything is normal or if there is a problem, all without interrupting the system. 


In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.


It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
To address a mandate for cutting operations energy usage at facilities by 25 percent without major capital expenditures, a major manufacturing company set its sites on better control of its compressed air systems.  The project, implemented at 10 manufacturing plants over the course of three years, saves the company $977,093 annually in energy costs – and was completed with zero out-of-pocket costs.
Held September 16-19, 2018 in Chicago, the first-ever event drew 750 attendees who came together to learn and share ideas about the countless ways to achieve efficiencies with compressed air, blower, vacuum and cooling systems – and in the process – save energy and improve profitability.
Many food processing plants are already using oil-free compressed air at a low-pressure dewpoint. This has required the use of two-stage oil-free screw air compressors, centrifugal air compressors and other technologies, as well as regenerative dryers of one type or another. The most common oil-free air compressor in industry is the two-stage “dry screw” machine and the most common regenerative dryer type is the heatless type. These are combined in many food processing, pharmaceutical, and high-tech plants.    
Compressed Air Best Practices® Magazine interviewed Bob Groendyke, Vice President and General Manager, of Hertz Kompressoren USA. Hertz Kompressoren USA is headquartered in Charlotte, N.C. We’re a premium brand of the Dalgakiran Group Company, a leading international compressed air sales and service producer with a well-established worldwide network. Our parent company was founded in in Turkey more than 50 years ago and currently sells and services machines in 130 countries. Hertz Kompressoren has built a solid reputation by creating and manufacturing high-quality products offered at reasonable prices to satisfy our worldwide customer base.
Machines for filling milk or juice must often work around the clock. Given the critical importance of uptime, Elopak opted for Aventics food-compliant pneumatics when developing its E-PS120A - the first fully aseptic filling machine for gable top packaging. With an output of up to 12,000 cartons per hour, disruptions and downtime are not welcome with the aseptic filling machine.
Gaseous nitrogen is used in a variety of systems and processes in the food manufacturing and packaging industries. Often regarded as the industry standard for non-chemical preservation, nitrogen is an inexpensive, readily available option. Suited for a variety of uses, Nitrogen needs to be monitored for purity and potential contaminants. Depending on the type of use, the distribution channel, and the required purity levels, different testing plans should be implemented to ensure safety.
Whenever we start a compressed-air energy survey there are always two key topics plant personnel feel are paramount – leaks and reducing pressure. In this installment of our series on missed demand-side opportunities we’ll address the importance of compressed air system pressure.
Measuring the Free Air Delivery (FAD) of an air compressor can be challenging. With a proper flow meter and some mathematics this task is manageable. This article sheds some light on how to select the flow meter and summarizes parameters to be considered in the FAD measurement task.
Helium is a precious noble gas that has become invaluable for leak detection, as well as cooling down magnets in medical equipment. This is why consumption of this essential industrial resource is increasing and its price is rising rapidly. To combat a looming shortage of this increasingly scarce resource, new methods of helium recovery are becoming more important than ever – as are specialized compressors for the same purpose.
Factory lasers use nitrogen right at the cutting point on the metal because the high temperatures used in the process can often cause oxidation. When oxidation occurs, the metal pieces being cut can be damaged, as can the tooling creating the cut. Structural damage or inaccurate cuts can make parts weak and render them useless. The use of nitrogen at the point of contact from laser to metal removes oxygen from the cutting area and helps cool the die as it cuts, thus preventing oxidation. This prevention improves the quality of the final products, produces less scrap metal and cuts back on the reworking of pieces.