Industrial Utility Efficiency    

Technology

Among the many “systems” plant personnel are concerned with, the compressed air system often provides the biggest opportunity for improvement and overall savings. There are many manufacturers and several air compressor technologies to choose from. Reciprocating or rotary? Fixed speed or variable speed? Oil flooded or oil free? Single-stage or two-stage technology? It’s enough to make anyone want to run and hide!

Air Compressors

Properly sizing a compressed air system can help determine if your facility has enough air to adequately supply your production equipment. Designing a cost effective system that minimizes any interruptions to productivity requires thoughtful planning and design. Typically, the desired outcomes of such a system focus on stable pressure and efficient operation, though it is important to note that each of these elements requires a unique solution. This article will provide guidance in proper selection considerations and suggest when a centrifugal air compressor may be ideal for your needs.

Air Treatment

Air compressors can produce a lot of water. Humidity in ambient air, once compressed, results in much of this water falling out, which we know as condensate. On a warm and humid summer day with inlet air temperatures of 80 oF, a 75-horsepower (hp) air compressor running fully loaded can produce over 25 gallons of condensate in just one eight-hour shift, with another five gallons being produced once the compressed air is sent through a dryer. The compression process allows for the air, water vapor, and lubricating fluids to mix. Once the condensate leaves the system, trace amounts of lubricant travel with it. This condensate should be processed through an oil-water separator before being discharged to groundwater or wastewater treatment plants.

Blowers

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

Companies will experience periods of increased production, as well as periods of slower or stopped production. It’s the nature of being in business. Understanding the implications of these business shifts for compressed-air installations (the powerhouse behind a facility’s production) is key for ensuring that air compressors remain functional and efficient. Here are guidelines to ensure your facility’s compressed-air system operates at top performance, no matter the speed of production.

Instrumentation

Like any system, to properly manage compressed air equipment some measurements have to be taken. Typically, some sort of data logging equipment is installed to measure various pressures, amps or power, flow, and sometimes temperatures and dewpoints. Placing this equipment on a system is like putting an electrocardiograph machine on a human heart, the heartbeat of the compressed air system in a plant can be analyzed to determine if everything is normal or if there is a problem, all without interrupting the system. 

Pneumatics

In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at $0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.  
In the last ten years, the design of pneumatic systems has changed dramatically, mainly due to developments in the technologies that create them. Pneumatic manufacturers’ online tools for sizing components have evolved, the fieldbus systems are ever-changing, component designs are constantly improving, and network devices such as the Industrial Internet of Things (IIoT) have reshaped the industry. All these advances play a large role in optimizing the efficiency of pneumatic systems, but the age-old practice of routine maintenance must not be overlooked. This article will focus on proper air compressor sizing, proper pneumatic component sizing and predictable preventative maintenance. 
This article will focus on ISO8573-7 normative test methods and analysis for viable microbiological contaminants and how it can be fundamentally utilized in compressed air microbial monitoring plans. The quality of the compressed air must be monitored periodically to fulfill national and international standards. ISO 8573 is an available standard addressing compressed air quality. It consists of nine parts that address purity classes, specifications, and procedures. ISO 8573-7:2003, can be utilized across all industries’ compressed air microbial monitoring plans. It contains both informative and normative procedures but lacks any tested compressed air microbial specifications regarding colony enumeration limits for microbial plate counts.
In an ideal world, we would all have plenty of space, time and money to create the perfect compressed air system. In practice, we have to balance our ideals versus what we can actually accomplish. Compressed air systems take considerable forethought and planning to achieve a perfect install; however, we can use some key takeaways from this article even if we are ever faced a less than ideal installation. Remember to keep the compressors cool, minimize piping pressure drop and to allow sufficient room around the equipment for service.
This article is going to identify two air compressor control situations that will preclude translating air use reduction in the production area into lower input energy into the air compressor.
The plant produces both molded and blow molded plastic parts on a 5 day per week, three shift schedule. Production and maintenance sometimes occurs on weekends, occasionally requiring the air compressors to run on a 24 x 7 basis so the practice was to leave the compressed air system always pressurized. The system consisted of three modulating lubricated screw compressors one sized at 150 hp and the others 125 hp (3 units), each controlled with their local compressor controllers.
A spectacular vision is gradually becoming reality in Cadarache in the south of France. Modeled on the sun, the ITER (International Thermonuclear Experimental Reactor) fusion system uses nuclear fusion to generate energy in order to secure humanity’s supply of electricity. One of the biggest challenges is the high temperature inside the reactor. Technology by Sauer Compressors is a key factor in cooling the reactor. The manufacturer has supplied the world’s largest system for helium recovery.
Compressed Air Best Practices interviewed Timo Pulkki (CEO), Hannu Heinonen (President, Tamturbo Inc.) and Mike Batchelor (Director of Sales Americas) from Tamturbo. Since the 1960’s, the Tampere region in Finland has been a birthplace of several air compressor innovations – many of which involved Kimmo Laine, a co-founder of Tamturbo. Mr. Laine was a leader in R&D in the air compressor business for many years since the 1960s. This included bringing a high-speed turbo air compressor to market later at Tamturbo. Working together in the 1980’s in a division of Tamrock, called Tamrotor-where Hannu Heinonen also worked, Mr. Laine met a gentleman named Jaakko Säiläkivi.
Compressed air contains contaminants such as dirt, water and oil which must be removed before use. ISO8573.1 specifies air quality classes for these contaminants. Humidity is expressed in terms of Pressure Dew Point (PDP). PDP is the temperature at which air is fully saturated with moisture, when the air temperature falls below this point further condensation will occur.
Today’s industrial manufacturing environment is extremely competitive, requiring companies to constantly search for cost saving opportunities and better efficiencies. In many cases, manufacturers find that centrifugal air compressors are a successful method for reducing the overall plant costs involved in supplying compressed air.