Industrial Utility Efficiency    

Bulk

One of the most common problems in plants is low air pressure. One of the most common solutions is to purchase new air compressors. Often this advice leads to a poor return on investment with the company’s hard-earned money. Often the issues are related to demand, distribution, or both. Solving the wrong problem can be expensive from a capital and operating cost perspective. Determining root cause analysis may cost more up front, but will save tens if not hundreds of thousands of dollars long term.
Portland cement companies combat heavy dust, reclaim product and enhance quality control using a variety of vacuum cleaning applications.
In many industrial plants there are one or more applications with intermittent demands of relatively high volume. One example is the use of dense phase transport systems to convey the cement. Dense phase systems can cause severe dynamic pressure fluctuations affecting quality of the end product in a plant.
In many manufacturing operations, a very significant compressed air use is pneumatic conveying of many types of materials such as cement, fly ash, starch, sugar, salt, sand, plastic pellets, oats, feeds, etc. Often these are systems that use high-pressure air (100 psig class) reduced to lower pressures (15 psig, 45 psig). This creates an air savings opportunity.
Sitting on his desk the day Brian began his new job as Plant Engineer for Carbo Ceramics’ McIntyre, GA facility was a proposal to purchase a new 150 HP air compressor as a backup machine. The facility already had six of these machines and, yes, all six ran almost continuously.
A compressed air system assessment saved this building materials manufacturer over $518,000 per year in energy costs, with a simple ROI of 11 months. 
Air cannons, also known as air blasters or just “blasters” belong to a family of products known as flow aid devices. For over 30 years, air cannons have been used widely in industries such as cement manufacturing, electric power generation, coal, metal, and non-metal mining, and pulp and paper manufacturing.
Compressed Air Best Practices® Magazine spoke with Mr. Ed McGovern (VP Sales & Business Development) of PIAB North America.
This facility processes bulk food ingredients into finished packaged food products. The factory belongs to a division of a large corporation and was spending $732,342 annually on energy to operate their compressed air system. This system assessment detailed twelve (12) project areas where yearly energy savings totaling $214,907 could be found with a minimal investment of $68,350. Due to space constraints, this article will detail only the higher impact project areas. The over-all strategy for improving this air system centers on improving specific power performance of the #3 centrifugal air compressor and reducing over-all demand with compressed air savings projects.