Industrial Utility Efficiency    

Industries

Outsourcing maintenance agreements for compressed air systems is commonplace in the food and beverage industry. The maintenance programs are often performed by air compressor distributors, who are experts in the specifics of the air compressors and compressed air systems they sell and service.

Auto

A Tier 1 automotive supplier was concerned its compressed air system was not operating as efficiently as it could be. The situation called for a site visit and metering and evaluation of the company’s air compressors to generate a representative data sample that accurately captured the compressed air needs during typical production and non-production periods.

Bulk

Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.

Food

Electricity and compressed air play an important role in the thermal and kinetic processes for everything from mixing and extruding the ingredients, deep-freezing to -13°F (-25°C), dipping into various chocolate coatings through to final packaging. Energy efficiency is therefore right at the top of Unilever’s list of priorities. As part of the Unilever Sustainable Living Plan, this global corporation has succeeded in saving more than $186 million in energy costs from efficiency improvements in production alone since 2008.

Medical

The air is delivered through a distribution piping system that ends with a medical air outlet within the room. Outlet requirements per room are governed by American Institute of America (AIA) Guidelines for Design and Construction of Hospitals and Healthcare Facilities. Equipment is plugged into the medical air outlet to treat the patient. Many studies have been done determining the load required for medical air compressors. The sizing can be calculated using several methods. 

Metals

One topic up for discussion in the metal fabrication industry is the assist gas used for laser cutting. The assist gas is fed into the laser head, and surrounds the laser as it cuts the work piece. The assist gas is intended to facilitate a smoother cut, increase cutting speeds and productivity, and to prevent discoloration, oxidation, scale, burred edges and other defects that can arise from the hot cutting temperatures. Since Nitrogen is an inert gas, it is used as an assist gas on many laser cutting systems to prevent oxygen from coming into contact with the metal while it’s being cut. Nitrogen is supplied to users in traditional cylinders, and with on-site nitrogen generation.

Paper

The facility has a compressed air system consisting of four, 200-horsepower (hp) two-stage water-cooled lubricant-free reciprocating air compressors. The air compressors are controlled individually with local pressure switch controls connected to a common pressure sensing point. These air compressors have been operating since the mid-1960s and are very difficult and expensive to maintain because parts are scarce and service companies with experience servicing this type of air compressor are difficult to find.

Pharmaceutical

This article is intended to show the relationships between risks and specifications, opportunities and responsibility in validation, and in particular, the use of modern and calibrated measurement technology in the sample chain.

Plastics

By making changes primarily focused on compressed air uses, Winpak, an international plastics products manufacturer based in Winnipeg, Manitoba, Canada, increased compressed air production capacity and reduced annual energy consumption by 33%. These benefits have been accomplished while the company was making the switch to lubricant-free compressed air to support product quality goals. This article discusses some of these changes and addresses measures that could be implemented in any compressed air system.

Power

A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.

Printing

The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.

Transit

When the New York City Transit Authority (NYCT) set out to comply with local regulations calling for reductions in energy usage, it leveraged new air compressors for use in transit bus maintenance and repair – and took things to another level by recovering air compressor waste heat to provide hot potable water for the bus depot. The air compressor and heat recovery system, installed in spring 2017, is on its way to helping NYCT achieve the best energy savings possible.

Wastewater

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.
Nuclear power plants produce electricity for people, business and industry.  Electricity is produced in a similar fashion as fossil fuel (i.e., coal, oil, etc.) power plants, using steam to drive a turbines which spin an electrical generator, producing the electricity. 
Industry standards serve a very important purpose for the end users of compressed air equipment.  If the standards are well written, they can help to promote the equipment that they govern, as long as the equipment manufacturers properly apply and promote the standards.
Utilities have been cleaning their boilers for many years using either steam or high-pressure air.  In the past, when air was used, due to the size of the boilers and the reasonable quality of fuel used, a relatively small amount of cleaning was required.
Boeing Canada has replaced their onsite membrane style Nitrogen generator with a new more modern system with increased capacity and higher efficiency.  As a result, the company is now using minimal amounts of expensive liquid Nitrogen, and has reduced the energy cost per unit of gas produced by 83%.
Relatively few people realize that for a variety of industrial manufacturing applications, from air knife drying to simple blow-off nozzles, the use of high pressure compressed air that bleeds into the atmosphere represents a significant waste of energy.  
Finding the most effective, reliable and economical method for separating and concentrating die lubricant is no easy task for die casting plants – and the situation at the Metaldyne aluminum die casting plant in Twinsburg, Ohio was no different. 
This steel processing facility has been operating for over one hundred years.  This facility is part of a large corporation with numerous plants around the world.  This audit focused on the compressed air system on one side of the Works which we will call the “North Plant”.
Compressed Air Best Practices Magazine interviewed Sid Van der Meer (President) and Terry Nickel (Office Manager) of the Northwest Equipment Company.
Motor Coach Industries, headquartered in Schaumburg, Illinois, is the largest manufacturer of intercity tour coaches for the tour, charter, line-haul, scheduled service, commuter transit and conversion markets in the U.S. and Canada. The company operates a four screw-type air compressor system at its Clarence Avenue plant in Winnipeg. To maintain adequate system pressure at the plant, Motor Coach was forced to run all four compressors 24 hours a day, seven days a week.
A four thousand, five hundred and fifty pound (4550 lbs.) race car is running at 170 mph and facing wind resistance of 150 mph. The car then enters a curve creating a three-degree “yaw” (the change in angle from the direction the car is headed and the airstream).  The car struggles to maintain speed as the yaw changes and the dynamic downforce load on the car changes.  Suddenly, the driver-less car comes to a stop on the stainless-steel track...