Industrial Utility Efficiency

System Assessments

Given that compressed air leak management programs are meant to save energy, reduce CO2 emissions, and generate ROI, DENSO’s Maryville, Tennessee, manufacturing facility can definitively say it has scored a trifecta when it comes to results – and reaped benefits beyond hard numbers alone.

A View From Europe. Challenge Convention: Compressor Management Systems Applied in the Automotive Industry

“First there are the old conventions. The majority of compressor houses still employ fixed speed compressors and a cascaded pressure switch control system. This arrangement will be familiar to many, but it is outdated and inefficient, and needs to be changed. There is a comfort factor with familiar technology, which is exacerbated by constant time pressure due to other day-today responsibilities and a lack of information and good advice on what can be achieved.”

 

Tier 1 Automotive Plant Saves $218,000 in Energy Costs

A Tier 1 automotive plant was spending \$364,259 annually on electricity to operate their compressed air system. This figure was expected to increase as electric rates were forecasted to rise from their current average of 7.16 cents per kWh. Our firm, Air Power USA, conducted a full supply and demand-side compressed air system assessment. The set of projects recommended by the assessment, would reduce these energy costs by \$218,670 or 60%.

VSD Compressor Control

“Compressed air systems with multiple compressors operating to supply demand requirements present unique challenges in compressed air system control schemes.”

Saving Energy in Automotive Assembly

This automotive assembly facility has tremendous peaks and valleys in compressed air demand. Our audit using flow meters and pressure transducers with calibrated gauges has proven this. Our Phase 1 audit recommends the use of storage tanks and flow meters to reduce air consumption while stabilizing pressure.

Advanced Air Leak Detection Services

“Instead of adding supply equipment, we fix air leaks and incorporate high-efficiency air nozzles, blower packages and point-of-use receivers.” These demand-side actions stabilize compressed air system pressure and this ultimately increases production output, reduces production down-time and spoilage costs, and decreases the power costs of the compressed air system.

A View From Southeast Asia. A Pharmaceutical System Assessment

We conducted a comprehensive compressed air system assessment. Opportunities to improve the system were found in the main piping system, in reducing pressure losses in the mold machine piping, and with the high ambient temperatures found in the compressor room. We estimated energy savings of 403,500 kWh per year for a power savings of \$65,000 per year. The total projects costs were \$48,000 for a simple ROI of nine (9) months.

The “Dirty Thirty” – Discovering Pressure Differential at the Far End

Much attention and expense is often directed towards optimizing compressor control, clean-up equipment, system pressure / flow control and main system piping in an attempt to maintain adequate and stable pressure at the end use. Often forgotten are the components of the distribution system between the main system header and the end use.

Three Demand-Side Projects at a Pharmaceutical Plant

This pharmaceutical plant spends \$265,100 annually on energy to operate the compressed air system at their facility. This figure will increase as electric rates are projected to be raised from their current average of 7.7 cents /kWh. The set of projects identified in the compressed air system assessment could reduce these energy costs by \$139,300 per year (52%).

A Pharmaceutical Compressed Air System Audit

This West Coast pharmaceutical facility has a very clean and organized compressed air system. All equipments is in good working order in the compressor room. The compressor room itself is very clean and well ventilated. The management requested a compressed air system audit for two reasons:

Industrial Sandblasting – Where Does All the Air Go?

“Sandblasting” is one of the oldest and most used methods of metal treatment. Various abrasive materials may be loaded manually or by a vacuum system pulling the “grit” from a storage tank. A control valve then operates with the compressed air (bypassing the vacuum pump), being forced into the tank pressurizing the receiver. When the high pressure compressed air goes out the discharge line, it pulls the appropriate amount of grit with it to effectively impinge against the targeted metal surface.

Compressor Controls

As part of its ongoing corporate initiative to find ways to reduce its energy bills, and the costly

Piping Storage

Blowing a jet of compressed air at an object is a common but “poor” use of compressed air. Often

End Uses

Without compressed air monitoring, up to 30% of the compressed air generated goes to waste. This

Pressure

During Dealer Week, they needed enough compressed air to power multiple machines at a time all day

Air Treatment/N2

Over the last two decades, there has been a significant increase of manufacturing facilities

Leaks

A significant manufacturing operation, in the U.S. Midwest, had successfully deployed a compressed

Pneumatics

If there was ever a place where manufacturers can save energy using compressed air and make

Vacuum/Blowers

A ‘Process’ application, is one where it’s all about controlling the contents of a vessel, pipeline