Industrial Utility Efficiency    

System Assessment

Great Plains has carved a global reputation for producing world-class seeding equipment since it first opened its doors in 1976. Great Plains manufactures a range of products from grain drills and planters, to compact drills and tillage equipment. They have established an international business built on expertise, knowledge and a commitment to producing products meeting the rigorous demands of the agricultural sector.

Compressor Controls

A large mining complex in a remote northern region of the world invited a compressed air auditor in to assess the efficiency of a problematic system. Site personnel and their air compressor supplier were concerned a system in one of the buildings was not running optimally, and wanted to know what size of compressor to install in the facility. The auditor found significant savings in this target system, but even larger potential savings were found in other ancillary systems in the complex, as part of an extra investigation conducted while at the site. Overall, the potential energy savings total more than half of a million dollars, if all recommendations are implemented.

Piping Storage

The company specializes in fabrication of precision assembled customized parts for OEM’s and system integrators. Since 1997 the company has steadily grown in size and capacity as the demand for its high quality fabrications has increased.  Through the years, many new CNC machines, laser cutters and powder coat painting operations have been added, but with all the expansion the facility has amazingly kept the plant compressed air consumption low. This has been achieved by following excellent “best practice” compressed air efficiency principles and by keeping watch on system waste.

End Uses

A meat processor, located in Canada, hired a consultant to assess their compressed air system as part of a company-wide energy conservation effort. The assessment and analysis showed, despite having a modern compressed air system using a VSD air compressor and pressure/flow control, the system was running inefficiently and had significant levels of leakage and inappropriate use.

Pressure

A Canadian chemical plant installed a large heated blower-purge style compressed air dryer, years ago, to condition the instrument air system against freezing temperatures.  The dryer selected was oversized for the connected air compressors and had unused on-board energy savings features.  A compressed air assessment revealed the site air compressors and compressed air dryers were running inefficiently and causing in-plant pressure problems.  Repairs to a compressed air dryer and the replacement of aging air compressors and dryers has reduced compressed air energy costs by 31 percent.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.

Leaks

Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.

Pneumatics

Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
Compressed air is used as a convenient and often necessary source of air flow to perform blow-offs, cooling, or drying.  And since compressed air is a costly utility, a frequent recommendation in this magazine and audits is to reduce the compressed air use by using high efficiency engineered nozzles.  Using these nozzles is a good practice as they are designed in a way that uses the compressed air to accelerate the surrounding air to deliver the same mass transfer effect as a standard nozzle (or tube) with a much larger orifice.
The Lafarge Cement Distribution terminal located in Winnipeg, Canada has significantly reduced the site electrical demand and energy charges by changing the way they transport their cement.  Two new low-pressure rotary screw air compressors have replaced two large high-pressure air compressors that previously powered their dense phase transport system.  The resulting power reduction has saved the company 46 percent in transport operating costs.
A small Australian company, Basil V.R. Greatrex (BVRG), is shaking up the compressed air industry in Australia. While other companies focus on the sale of more and bigger compressed air production equipment, BVRG is helping customers reduce their compressed air system size and lower system flow by attacking waste, inappropriate use, and at the same time improving air quality.
Facility managers, how would you like the peace of mind from knowing the system you had installed or modified is thoroughly tested - to the same degree as a new production line?  How would you like to be confident that the money you spent is still paying back benefits, year after year? 
At a Midwest window manufacturing plant, the cooling process for the plastic frame pieces, after leaving the extruder, was critical to process productivity and quality. Too much cooling air (or not enough cooling air) would generate scrap and rejected product. The plants’ 17 extruders and 55 separate blow-offs in these lines had similar cooling stations at the cooling boxes. They consisted of about three hoses at each exit frame angled down to the extruded piece moving past it. The compressed air flow was controlled by a manual control valve set by an operator. The operator used his experience to control the flow delivered and thereby control the product quality.
A major poultry processor and packager spends an estimated $96,374 annually on energy to operate the compressed air system at its plant located in a southern U.S. state.  The current average electric rate, at this plant, is 8 cents per kWh.
“Retro-Commissioning” (ReCX) of compressed air systems has become a trendy activity with many utility demand-side-management programs emerging in the last 5-10 years.  This is intended to be the process of “tuning up” a compressed air system, getting low cost savings from mostly adjustments and repairs.  The term was borrowed from the building/HVAC industry, where it means to get a system operating as it was originally “commissioned”. 
UniFirst is one of North America’s largest workwear and textile service companies. They outfit nearly two million workers in clean uniforms and protective clothing each workday. Founded in an eight-stall garage in 1936, the Company has grown to 240 customer servicing locations throughout the U.S. and Canada servicing 300,000 business customer locations. The subject of this article is an energy-saving Air Demand Analysis (ADA), conducted by Kaeser Compressors, at UniFirst’s centralized 320,000 square foot hub Distribution Center located in Owensboro, Kentucky.
MHPSC Canada is a large facility specializing in machining and manufacturing large pieces for power generation (gas turbines, large hydro, wind) and deep sea oil and gas operations.  Smaller machining and manufacturing are also done in the facility, as well as welding and piping fabrication. MHPSC purchased flow meters for two systems, the Large and Small Machine Shops, to measure the total compressed air production.  Since the two systems have piping that is physically close together, it was felt that there was an opportunity to tie the two systems together to save energy.  The readings showed that the compressed air demand was indeed low enough in the two systems to enable a 100 hp VFD compressor to feed the combined systems.
There is an often-quoted ratio of 7.5 hp input to one horsepower output used to illustrate the inefficiency of the energy transfer in compressed air systems.  What this is saying is that you receive the benefit of only 13 percent of the energy you put into your air compressors as mechanical output at the shaft of a typical compressed air powered tool. While this ratio is generally true for compressed air system awareness discussion purposes, you should understand that in the real world compressed air efficiency is usually much lower.