Industrial Utility Efficiency    

System Assessment

Many are familiar with the advances with improved technology in the compressed air supply. Such advancements as, proactive central air compressor controls to maintain optimum operation of multiple compressors to support ever changing air demands; improved drive systems such as VSD’s; magnetic bearing drives (centrifugals); and more efficient and reliable equipment taking advantage of modern manufacturing capability. These new technologies are very important in generating relative high energy cost savings, and are well promoted by the OEM equipment manufacturers.

Compressor Controls

This article is going to identify two air compressor control situations that will preclude translating air use reduction in the production area into lower input energy into the air compressor.

Piping Storage

One of the most common problems in plants is low air pressure. One of the most common solutions is to purchase new air compressors. Often this advice leads to a poor return on investment with the company’s hard-earned money. Often the issues are related to demand, distribution, or both. Solving the wrong problem can be expensive from a capital and operating cost perspective. Determining root cause analysis may cost more up front, but will save tens if not hundreds of thousands of dollars long term.

End Uses

In this series we covered some very common issues in the Compressed Air Generation or “Supply Side” with regard to misapplying some capacity controls and installing different types of air compressors with piping and/ or orientation. These can preclude any reduction in compressed air demand on the production side from effectively translating lower air usage into a commensurate level input energy.


A pharmaceutical plant, has had a compressed air assessment performed on two plant systems.  The studies uncovered poor compressed air production efficiency, high air dryer loss, and problems with high flow compressed air uses negatively affecting plant pressure. The plant implemented energy efficiency measures, on the two compressed air systems, saving 46 and 64 percent in energy costs respectively.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.


Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.


A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at $0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.  

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
A recent comparative vacuum technology study performed by Dr. Kingman Yee, as part of a Chrysler Summer Intern Professors Program, found that air consumption could be reduced by 98% when equipping a robot’s end-of-arm tooling with COAXÆ technology and a Vacustat™ check valve.
This stamping plant is a 2.5 million-square-foot facility with over two thousand employees.  At the time of the assessment, the plant was processing approximately 1,600 tons of steel per day into automotive vehicle components and parts such as body parts.
Air cannons, also known as air blasters or just “blasters” belong to a family of products known as flow aid devices. For over 30 years, air cannons have been used widely in industries such as cement manufacturing, electric power generation, coal, metal, and non-metal mining, and pulp and paper manufacturing.
Reducing energy costs and pollution emissions involves many areas within an industrial facility.  My studies have found seven (7) key (or common) areas where low cost practical projects can be implemented.  Combined, these projects provide savings exceeding 10% of the annual energy spend with an average payback of less than one year.
Compressed Air Best Practices® Magazine spoke with Mr. Ed McGovern (VP Sales & Business Development) of PIAB North America.
How do you test a 747 engine to ensure reliability once it’s airborne at 600 miles an hour?
This facility processes bulk food ingredients into finished packaged food products. The factory belongs to a division of a large corporation and was spending $732,342 annually on energy to operate their compressed air system. This system assessment detailed twelve (12) project areas where yearly energy savings totaling $214,907 could be found with a minimal investment of $68,350. Due to space constraints, this article will detail only the higher impact project areas. The over-all strategy for improving this air system centers on improving specific power performance of the #3 centrifugal air compressor and reducing over-all demand with compressed air savings projects.
Faced with rising energy costs, a large electroplating company sought to improve the efficiency and reliability of its compressed air system. After getting a quote from their vendor on a new 300-hp compressor to replace an existing unit, the company sought a comparison quote due to the significant investment the new compressor represented. Based on a recommendation from one of their customers, they turned to Scales Industrial Technologies.
In February of 2008, a sugar plant near Savannah, Georgia suffered the ultimate tragedy. Fouteen employees were killed and 40 injured when finely ground motes of sugar dust ignited, setting off a violent blast. If the fatalities and a tarnished reputation weren’t enough, the Occupational Safety and Health Administration (OSHA) then fined the company more than 8 million dollars in workplace violations related to combustible dust.
Nuclear power plants produce electricity for people, business and industry.  Electricity is produced in a similar fashion as fossil fuel (i.e., coal, oil, etc.) power plants, using steam to drive a turbines which spin an electrical generator, producing the electricity.