Industrial Utility Efficiency    

System Assessment

Annual plant electric costs for compressed air production, as operating today, are $147,469 per year. If the electric costs of $750 associated with operating ancillary equipment such as dryers are included, the total electric costs for operating the air system are $148,219 per year. These estimates are based upon a blended electric rate of $0.087 /kWh. The air system operates 8,760 hours per year. The load profile or air demand of this system is relatively stable during all shifts. Overall system flow ranges from 800- 1,000 acfm during production. The system pressure runs from 95 to 80 psig in the headers during production.  

Compressor Controls

UniFirst is one of North America’s largest workwear and textile service companies. They outfit nearly two million workers in clean uniforms and protective clothing each workday. Founded in an eight-stall garage in 1936, the Company has grown to 240 customer servicing locations throughout the U.S. and Canada servicing 300,000 business customer locations. The subject of this article is an energy-saving Air Demand Analysis (ADA), conducted by Kaeser Compressors, at UniFirst’s centralized 320,000 square foot hub Distribution Center located in Owensboro, Kentucky.

Piping Storage

The company specializes in fabrication of precision assembled customized parts for OEM’s and system integrators. Since 1997 the company has steadily grown in size and capacity as the demand for its high quality fabrications has increased.  Through the years, many new CNC machines, laser cutters and powder coat painting operations have been added, but with all the expansion the facility has amazingly kept the plant compressed air consumption low. This has been achieved by following excellent “best practice” compressed air efficiency principles and by keeping watch on system waste.

End Uses

A chemical plant spends an estimated $587,000 annually on electrical energy to operate their compressed air system. In addition, the plant has an expenditure on rental air compressors of equal or greater size - but this will not be covered in this article. The plant was built in the 1940s and modernized in the 1970s. The plant generates its own power and serves many processes. The average cost per kWh is $0.0359.

Pressure

A Canadian chemical plant installed a large heated blower-purge style compressed air dryer, years ago, to condition the instrument air system against freezing temperatures.  The dryer selected was oversized for the connected air compressors and had unused on-board energy savings features.  A compressed air assessment revealed the site air compressors and compressed air dryers were running inefficiently and causing in-plant pressure problems.  Repairs to a compressed air dryer and the replacement of aging air compressors and dryers has reduced compressed air energy costs by 31 percent.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.

Leaks

Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.

Pneumatics

Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
Acrylon Plastics located in Winkler, Manitoba, Canada manufactures an extensive variety of custom plastic parts for a wide range of end use applications. Years ago changes to their production volumes increased the compressed air flows to above what their compressed air system could deliver. As a result the plant pressure would fall to low levels during production peak demands, which negatively affected sensitive compressed air powered machines. In addition to this during light plant loading conditions the air compressors would run inefficiently. Plant personnel tried a variety of strategies to deal with the plant peaks, with the most efficient solution coming as a result of installing VSD style compressors and pressure/flow control.
As readers of this publication know, there are many ways to save energy in industrial compressed air systems. One common supply side technology is the variable frequency drive (VFD) of the compressor. It is well-documented that positive-displacement compressors with VFDs provide cost-effective savings in comparison to inlet modulating, load-unload, and variable displacement control.
Quite a number of worst-case compressed air scenarios have been encountered over the years but none may compare to the conditions that existed in a metal foundry somewhere in North America. For reasons you are about to discover, we will not reveal the name of this factory or its location, in order to protect the innocent from embarrassment.
Production complains about frequent work stoppages due to air supply related problems. It wants a more reliable consistent source of compressed air. Maintenance says it will need to replace an older compressor with a new one to improve the reliability and stability of the system. Maybe purchase a bigger one than currently needed in anticipation of future increases in air demands. Management wants assurances a good return on the investment will be realized from the expenditure before making a financial commitment. For comparing and evaluating alternatives, a benchmark must be established to determine the cost to run the current system. An assessment must be performed to identify the saving’s opportunities and assign dollar values. Questions about the cost of the assessment and what is to be expected in return need to be answered.
Throughout its history, Watts Water Technologies has prided itself on providing plumbing, heating, and water quality solutions that are in full compliance with federal and state mandates. With the Reduction of Lead in Drinking Water Act that took effect on January 4, 2014, Watts Water continued its commitment to compliance when it set to work planning a multi-million dollar lead-free foundry in Franklin, NH.
This metal fabrication and machining facility produces high-quality precision-built products. Over the years, the plant has grown and there have been several expansions to the current location. The company currently spends $227,043 annually on energy to operate the compressed air system. This figure will increase as electric rates are raised from their current average of 9.8 cents per kWh.
EnergAir’s unrivalled expertise in compressed air management is helping to save in excess of $50,000 per year at Whirlpool Corporation’s Ottawa, Ohio production facility. Whirlpool is the largest global manufacturer of home appliances and employs almost 70,000 people in more than 60 production and technology centres around the world. The Whirlpool plant in Ottawa manufactures a market-leading range of trash compactors, chest freezers, upright freezers and refrigerators.    
Boeing Canada Winnipeg (BCW) has been recognized with the best improvement project of 2013 within the Boeing enterprise worldwide. A cross-functional project team including BCW staff, Manitoba Hydro technical support, and design engineers from Alliance Engineering Services, Inc. used innovative high-pressure storage to reduce the required size of their air compressors and save substantial utility energy and demand charges.
Most of us understand each individual has a unique DNA combination. Compressed air is very similar, each compressed air system should be uniquely designed so the system performs in harmony. Properly managing the compressed air system requires an investigative audit to understand the nuances of the system and identify the most effective solution(s) for efficiency. Not investigating the system, before selecting improvements, would be like consenting to surgery without having an exam. Yet, this frequently occurs in businesses operating compressed air systems.
This is a food processing plant where processes and standards are controlled by FDA to AIB standards. Annual plant electric costs for compressed air production, as operating today, are $116,765 per year. If the electric costs of $3,323 associated with operating ancillary equipment such as dryers are included, the total electric costs for operating the air system are $120,088 per year. These estimates are based upon a blended electric rate of $0.085/kWh.