Industrial Utility Efficiency    

System Assessment

While late summer may not be the time of year many of us think about heat recovery, the potential for energy savings in compressed air systems should be on our minds year-round. For those involved with the compressed air systems within International Wire Group’s facilities, energy savings is on their minds each day. This culture of continuous improvement has everyone on the lookout for savings wherever possible.

Compressor Controls

UniFirst is one of North America’s largest workwear and textile service companies. They outfit nearly two million workers in clean uniforms and protective clothing each workday. Founded in an eight-stall garage in 1936, the Company has grown to 240 customer servicing locations throughout the U.S. and Canada servicing 300,000 business customer locations. The subject of this article is an energy-saving Air Demand Analysis (ADA), conducted by Kaeser Compressors, at UniFirst’s centralized 320,000 square foot hub Distribution Center located in Owensboro, Kentucky.

Piping Storage

The company specializes in fabrication of precision assembled customized parts for OEM’s and system integrators. Since 1997 the company has steadily grown in size and capacity as the demand for its high quality fabrications has increased.  Through the years, many new CNC machines, laser cutters and powder coat painting operations have been added, but with all the expansion the facility has amazingly kept the plant compressed air consumption low. This has been achieved by following excellent “best practice” compressed air efficiency principles and by keeping watch on system waste.

End Uses

A chemical plant spends an estimated $587,000 annually on electrical energy to operate their compressed air system. In addition, the plant has an expenditure on rental air compressors of equal or greater size - but this will not be covered in this article. The plant was built in the 1940s and modernized in the 1970s. The plant generates its own power and serves many processes. The average cost per kWh is $0.0359.


A Canadian chemical plant installed a large heated blower-purge style compressed air dryer, years ago, to condition the instrument air system against freezing temperatures.  The dryer selected was oversized for the connected air compressors and had unused on-board energy savings features.  A compressed air assessment revealed the site air compressors and compressed air dryers were running inefficiently and causing in-plant pressure problems.  Repairs to a compressed air dryer and the replacement of aging air compressors and dryers has reduced compressed air energy costs by 31 percent.

Air Treatment/N2

This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.


Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.


Energy, in all forms, has always been a key Lantech focus. It was, in fact, a key element of the core packaging problem the company’s founders set out to address. They saw an opportunity to capitalize on an inexpensive and under-used resource – stretch film – to displace a high materials cost and energy intensive way of unitizing pallet loads of products – shrink bagging.

Vacuum Blowers

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.
Boeing Canada Winnipeg (BCW) has been recognized with the best improvement project of 2013 within the Boeing enterprise worldwide. A cross-functional project team including BCW staff, Manitoba Hydro technical support, and design engineers from Alliance Engineering Services, Inc. used innovative high-pressure storage to reduce the required size of their air compressors and save substantial utility energy and demand charges.
Most of us understand each individual has a unique DNA combination. Compressed air is very similar, each compressed air system should be uniquely designed so the system performs in harmony. Properly managing the compressed air system requires an investigative audit to understand the nuances of the system and identify the most effective solution(s) for efficiency. Not investigating the system, before selecting improvements, would be like consenting to surgery without having an exam. Yet, this frequently occurs in businesses operating compressed air systems.
This is a food processing plant where processes and standards are controlled by FDA to AIB standards. Annual plant electric costs for compressed air production, as operating today, are $116,765 per year. If the electric costs of $3,323 associated with operating ancillary equipment such as dryers are included, the total electric costs for operating the air system are $120,088 per year. These estimates are based upon a blended electric rate of $0.085/kWh.
As you walk past the “sandblasting cabinet” back in the corner of the plant running alone and without the need for monitoring, does the thought of operational costs enter your mind? When it does, are you happy knowing the cabinet is automatic and does not need a full-time operator? Then, did you say to yourself, I wonder how much that abrasive media costs? How long does it last? Is this a more cost competitive alternative? Is there something that might last longer?
Compressed air reliability has been the obsession of both factory personnel and service providers for a number of years now. Constant availability of high quality air can be absolutely critical to maintaining efficient plant production. Most modern factories operate reliable compressed air systems – and more recently have also begun to focus on the efficiency of those systems. The objective of this article is to use a few real-life case studies of already reliable compressed air installations to illustrate the potentially huge economic benefits of also improving system efficiency.
Over many years of reviewing industrial compressed air production machinery, of many types and styles, there is one common thread or complaint; “push-to-connect pneumatic tubing connections/fittings are a continual source of compressed air leaks and production interruptions.”  Probably seventy-five to eighty percent of push-to-connect type tubing fittings use flexible tubing selected for lower material cost and assembly rather than an alternate appropriate hard metallic tubing.  
Chemical plants, due to their size and complexity, pose many challenges to the efficient and reliable operation of a compressed air system. There are so many places for hidden opportunities to be found in these large industrial complexes. We are normally dealing with several large centrifugal and rotary screw air compressors scattered across the complex. We encounter sites with well over thirty (30) desiccant air dryers of different types. Compressed air leaks can be found almost at will across the vast lengths of compressed air piping. Add to this the fact they are outdoor installations exposing all compressed air system components to the extremes of summer and winter. As you can imagine, it is a big task to simply understand the system.
This paper mill currently spends $1,747,000 annually on energy to operate the compressed air system at their plant located in the southwestern region of the U.S. The set of projects recommended, in this system assessment, could reduce these energy costs by $369,000 or twenty-one percent (21%). Estimated costs for completing the projects total $767,900, representing a simple payback of 25 months. More importantly, these projects will improve productivity, quality and maintenance costs - many associated with poor compressed air quality.
Based on the air system operating 8,760 hours per year, the group of projects recommended below could reduce these energy costs by an estimated $170,718 or 56% of current use.  In addition, these projects will allow the plant to have a back-up compressor and help eliminate the rental expenditure for compressor maintenance or downtime.
The development of extruded aluminum piping is a recent innovation in the compressed air industry. The internal bore of this piping is smooth and corrosion resistant which makes the pressure differential characteristics of a straight run of this pipe superior to that of steel pipe. Because it is much lighter than steel pipe the installation is much easier. And the manufacturers of this style of piping have come up with various twist lock connectors to make the installation even simpler.