Industrial Utility Efficiency    

Technology

According to the United States Department of Agriculture, more than 30,000 food and beverage processing plants across the United States employ more than 1.5 million workers.1 Each of those plants applies a wide range of processes to raw agricultural goods to produce consumable food and beverage products.

Air Compressors

By far the most important development in the world of screw type air compressors has been the introduction of variable speed control using electronic variable frequency drives (VFD’s). Systems that run with at least one air compressor at part load can almost always operate more efficiently if a well-controlled VFD is added to the system. But what if a system has two or more VFD units? This article discusses the challenges in controlling multiple VFD air compressors with some suggested solutions.

Air Treatment

In modern and industrial work settings, people spend more than 90% of their time in enclosed spaces, such as warehouses, office buildings and factories. In most indoor environments, the air contains a variety of chemical and microbial particles, commonly defined as indoor pollutants, which can severely affect human health and product quality (1). Industries like food and beverage, medical devices and pharmaceutical manufacturers rely on their scheduled compliance testing to confirm the presence or absence of issues in workflow pipelines that are detrimental to the daily output and safety of the product.

Blowers

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

Often, multiple centrifugal air compressors are set up to simply react to air demand, which requires the system to not only meet the new demand, but also make up for air depleted in the main header. This typically results in too much supply, which results in bypassing the air to atmosphere. The result is wasted energy use.

Instrumentation

High accuracy of multiple measured parameters is critical for the development of a trusted compressed air system baseline audit. The same is true for follow-on performance validation after system improvements have been implemented. The use of data acquisition systems using Modbus-interfaced transducers can aid auditors in achieving a thorough and highly accurate system performance assessment.

Pneumatics

In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
As demand for compressed air use continues to grow, the future looks bright for distributors who design, sell, install and service compressed air systems. But perhaps only one thing stands in the way of continued growth and profitability for the vast majority of distributors throughout the United States: the shortage of experienced air compressor service technicians.
Brewing is normally broken down into four stages-malting, mashing, boiling and fermenting. The complex chemical processes begin with a few simple ingredients - hops, grain, yeast and water. Recently there have been technological advancements to safeguard that these steps are attained accurately, efficiently and with cost-savings. One particular improvement is the use of nitrogen during the brewing process. The addition of an onsite nitrogen generator allows brewers to reduce their nitrogen costs, eliminate downtime, and reduce safety risks related to bulk gas cylinder delivery and changeouts.
Introduced in the 1960s and operated successfully worldwide, the Heat of Compression (HOC) Desiccant Dryer has been a viable and successful compressed air drying technology for over 50 years.  In our ongoing series on missed-demand opportunities, we’ll discuss basic operating parameters of HOC dryers and shed light on common misperceptions associated with the technology.
For more than 20 years, Hungarian-based Doroti Pack Ltd. has specialized in the production and servicing of state-of-the-art packaging machines. Their focus is on developing, manufacturing, producing and selling premium-quality packaging equipment, including their line of DorPack thermoforming machines which are often used for food products such as fresh meat, fish, dairy products, bakery ware, confectionery and ready-cooked foods. Dorati Pack chose to incorporate Aventics pneumatic components in latest thermoforming machine for optimal productivity and machine longevity.
Experienced auditors become wary when they see desiccant dryers installed in customers’ plants. These dryers are required when a plant needs instrument-quality compressed air, or when compressed air piping is exposed to freezing temperatures. However, while desiccant dryers can gain this level of quality, the energy cost of stepping up from a dewpoint of 35 oF to a level of -40 oF increases quite considerably. To attempt to reduce the energy costs of drying to these low levels, heated blower desiccant styles may be used. This article describes three common desiccant dryer types, as well as some experiences, good and bad, with heated blower types.
Compressed Air Best Practices® interviewed Sang Woo Lee, CEO of Coaire Corporation. I had enough experience with compressors used in refrigeration to see there was a lot of area for growth, particularly with scroll technology given that its an oil-less air compressor in addition to its efficiencies, noise level and ability to offer customers longevity. I also liked that Coaire has a long history of innovative air compressor technology. In 1968, it became the first Korean company to develop and manufacture a reciprocating air compressor. Later, it became the first Korean manufacturer of rotary screw air compressors, which occurred after it established ties with SRM to develop unique airend technology.
In most industrial plants, data is everywhere. It resides in flow through pipes, pressure in tanks, vibration on rotating equipment, temperatures in heat exchangers, and electrical energy power consumption in motors. If we can acquire this data and make sense out of the patterns we can take actions to make our plants more efficient and reliable.
After getting its start manufacturing cost-effective products to the healthcare industry, 40 years later, 1888 Mills has become the fourth largest towel manufacturer in the world, and the largest towel manufacturer in the U.S. With facilities in the United States, Pakistan and Bangladesh, 1888 Mills’ towels are used in almost every corner of the world. 1888 Mills is recognized as a leader in innovation in the textile industry and produces 176,000 pounds of towels per week.
To address a mandate for cutting operations energy usage at facilities by 25 percent without major capital expenditures, a major manufacturing company set its sites on better control of its compressed air systems.  The project, implemented at 10 manufacturing plants over the course of three years, saves the company $977,093 annually in energy costs – and was completed with zero out-of-pocket costs.
Held September 16-19, 2018 in Chicago, the first-ever event drew 750 attendees who came together to learn and share ideas about the countless ways to achieve efficiencies with compressed air, blower, vacuum and cooling systems – and in the process – save energy and improve profitability.