Industrial Utility Efficiency    

Industries

Outsourcing maintenance agreements for compressed air systems is commonplace in the food and beverage industry. The maintenance programs are often performed by air compressor distributors, who are experts in the specifics of the air compressors and compressed air systems they sell and service.

Auto

The project, which also involved the addition of a booster air compressor and receiver tank – along with the installation of an important pressure control valve – gives the automaker the ability to run fewer centrifugal air compressors during peak production. In so doing, the plant saves nearly 6.1 million kWh and more than $600,000 per year in energy costs. The project also qualified for a $369,374 rebate from the local utility, resulting in a six-month project payback – all while improving system reliability.

Bulk

Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.

Food

As a leading North American bakery company Weston Foods ensures its numerous facilities productively and cost-effectively produce high-quality baked goods. But it doesn’t stop there. It goes the extra mile to optimize and manage its utilities to conserve energy and protect the environment.

Medical

The air is delivered through a distribution piping system that ends with a medical air outlet within the room. Outlet requirements per room are governed by American Institute of America (AIA) Guidelines for Design and Construction of Hospitals and Healthcare Facilities. Equipment is plugged into the medical air outlet to treat the patient. Many studies have been done determining the load required for medical air compressors. The sizing can be calculated using several methods. 

Metals

The steel mill in this article is a rolling “minimill,” a facility that melts scrap recycled steel and produces rebar for the construction industry. It fits in SIC code 3310. There are many plants like this all over the world, providing an environmentally sound service and product for their local community. They recycle waste steel from local sources and support local infrastructure projects with rebar, using electricity generated locally.

Paper

Experienced auditors become wary when they see desiccant dryers installed in customers’ plants. These dryers are required when a plant needs instrument-quality compressed air, or when compressed air piping is exposed to freezing temperatures. However, while desiccant dryers can gain this level of quality, the energy cost of stepping up from a dewpoint of 35 oF to a level of -40 oF increases quite considerably. To attempt to reduce the energy costs of drying to these low levels, heated blower desiccant styles may be used. This article describes three common desiccant dryer types, as well as some experiences, good and bad, with heated blower types.

Pharmaceutical

Blood plasma is an indispensable resource in the production of life-saving medicines. It is also in high demand on global markets. To make more efficient use of this valuable commodity, Biotest AG developed a new large-scale production plant in Dreieich, Germany, for plasma fractionation capable of obtaining five instead of the previous three products from a single liter of blood plasma. As part of its strategy, Biotest AG worked with Festo to standardize automation components used at the plant, resulting in simplified installation and maintenance.

Plastics

The plant produces both molded and blow molded plastic parts on a 5 day per week, three shift schedule. Production and maintenance sometimes occurs on weekends, occasionally requiring the air compressors to run on a 24 x 7 basis so the practice was to leave the compressed air system always pressurized. The system consisted of three modulating lubricated screw compressors one sized at 150 hp and the others 125 hp (3 units), each controlled with their local compressor controllers.

Power

A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.

Printing

The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.

Transit

When the New York City Transit Authority (NYCT) set out to comply with local regulations calling for reductions in energy usage, it leveraged new air compressors for use in transit bus maintenance and repair – and took things to another level by recovering air compressor waste heat to provide hot potable water for the bus depot. The air compressor and heat recovery system, installed in spring 2017, is on its way to helping NYCT achieve the best energy savings possible.

Wastewater

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.
Petro Chemical Energy, Inc. (PCE) specializes in energy loss surveys for the refining and chemical industries. We’ve been providing Compressed Air Leak Surveys, Nitrogen Leak Surveys, Steam Leak Surveys and Steam Trap Surveys – for over twentyfive (25) years. We operate totally independent of all equipment manufacturers to ensure our clients receive a complete and unbiased report of the leaks in their facility. PCE has conducted compressed air leak surveys for hundreds of customers at thousands of sites. Undetected, compressed air and gas leaks rob efficiency in manufacturing and processing industries. As a result, businesses lose millions of dollars annually in energy costs and lost production time.
A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.
A chemical plant spends an estimated $587,000 annually on electrical energy to operate their compressed air system. In addition, the plant has an expenditure on rental air compressors of equal or greater size - but this will not be covered in this article. The plant was built in the 1940s and modernized in the 1970s. The plant generates its own power and serves many processes. The average cost per kWh is $0.0359.
A pharmaceutical product manufacturer spends an estimated $137,443 annually on electricity to operate the oil-free air compressors in its compressed air system. The compressed air system operates well and is providing the level of purification required.  Our team visited the plant and identified a group of projects which could reduce compressed air demand and reduce energy costs by $42,248 – or 31% of current use.
A large pharmaceutical company needed huge flow rates of 30 psig air to aerate multiple fermentation processes which create food-grade materials.  Flow could vary from about 12,000 scfm to 35,000 scfm.  There were a variety of batch processes, mostly running independently.  An hour-by-hour schedule for anticipated air flow is developed every afternoon for the next day.  Based on that schedule, the boiler operators run the air compressors that can handle the load range for the whole day. In reality, the peak flow can be higher than anticipated.
Compressed Air Best Practices® Magazine interviewed Mr. Warwick Rampley, the National Sales Manager for Sydney (Australia) based, Basil V.R. Greatrex Pty Ltd. It’s not every day one is asked to deliver a system able to provide both a reliable compressed air dew point of -80°C (-112°F) and high purity nitrogen.  We work with some excellent technology suppliers and have engineered a rather interesting system.  Although our firm was founded in 1919, this application is one of the most demanding we’ve encountered. Basil V.R. Greatrex is a unique company as we focus only on compressed air measurement, compressed air quality and compressed air efficiency.
The Lafarge Cement Distribution terminal located in Winnipeg, Canada has significantly reduced the site electrical demand and energy charges by changing the way they transport their cement.  Two new low-pressure rotary screw air compressors have replaced two large high-pressure air compressors that previously powered their dense phase transport system.  The resulting power reduction has saved the company 46 percent in transport operating costs.
A plastic product manufacturer spends an estimated $245,000 annually on electricity to operate the air compressors in a compressed air system at its plant located in a midwestern U.S. state.  The main manufacturing process is plastic extruding. The current average electric rate, at this plant, is 7 cents per kWh. The compressed air system operates 8,760 hours per year and the load profile of this system is relatively stable during all shifts.
Paying close attention to compressed air use is paramount for identifying potential energy-saving projects. The engineering team at Ball Corporation has been well aware of this fact for years. An active member in the Environmental Protection Agency’s ENERGY STAR® program, Ball Corporation scrutinizes manufacturing processes to maximize the energy efficiency of compressed air systems in each of its plants.
A small Australian company, Basil V.R. Greatrex (BVRG), is shaking up the compressed air industry in Australia. While other companies focus on the sale of more and bigger compressed air production equipment, BVRG is helping customers reduce their compressed air system size and lower system flow by attacking waste, inappropriate use, and at the same time improving air quality.