Industrial Utility Efficiency    


Outsourcing maintenance agreements for compressed air systems is commonplace in the food and beverage industry. The maintenance programs are often performed by air compressor distributors, who are experts in the specifics of the air compressors and compressed air systems they sell and service.


The Ford Motor Company Kentucky Truck Plant (KTP) not only manufactures upscale SUVs and pickup trucks painted in wide variety of stellar, high-quality colors and finishes –  it does so cost-effectively by conserving annual compressed air energy of approximately 9.2 GWh thanks to a major overhaul of the plant’s compressed air system.


Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.


Electricity and compressed air play an important role in the thermal and kinetic processes for everything from mixing and extruding the ingredients, deep-freezing to -13°F (-25°C), dipping into various chocolate coatings through to final packaging. Energy efficiency is therefore right at the top of Unilever’s list of priorities. As part of the Unilever Sustainable Living Plan, this global corporation has succeeded in saving more than $186 million in energy costs from efficiency improvements in production alone since 2008.


The air is delivered through a distribution piping system that ends with a medical air outlet within the room. Outlet requirements per room are governed by American Institute of America (AIA) Guidelines for Design and Construction of Hospitals and Healthcare Facilities. Equipment is plugged into the medical air outlet to treat the patient. Many studies have been done determining the load required for medical air compressors. The sizing can be calculated using several methods. 


Manufacturers familiar with the U.S. Environmental Protection Agency (EPA) ENERGY STAR® Energy Treasure Hunts initiative know it’s a great way to save energy and natural resources – as long as it’s done right – which is why some are turning to perhaps their best asset to achieve success: their unionized workforce.


The facility has a compressed air system consisting of four, 200-horsepower (hp) two-stage water-cooled lubricant-free reciprocating air compressors. The air compressors are controlled individually with local pressure switch controls connected to a common pressure sensing point. These air compressors have been operating since the mid-1960s and are very difficult and expensive to maintain because parts are scarce and service companies with experience servicing this type of air compressor are difficult to find.


This article is intended to show the relationships between risks and specifications, opportunities and responsibility in validation, and in particular, the use of modern and calibrated measurement technology in the sample chain.


By making changes primarily focused on compressed air uses, Winpak, an international plastics products manufacturer based in Winnipeg, Manitoba, Canada, increased compressed air production capacity and reduced annual energy consumption by 33%. These benefits have been accomplished while the company was making the switch to lubricant-free compressed air to support product quality goals. This article discusses some of these changes and addresses measures that could be implemented in any compressed air system.


A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.


The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.


When the New York City Transit Authority (NYCT) set out to comply with local regulations calling for reductions in energy usage, it leveraged new air compressors for use in transit bus maintenance and repair – and took things to another level by recovering air compressor waste heat to provide hot potable water for the bus depot. The air compressor and heat recovery system, installed in spring 2017, is on its way to helping NYCT achieve the best energy savings possible.


The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.
A Canadian poultry plant has upgraded their aging compressed air system for their new expansion, making it significantly more energy efficient and also solving ongoing pressure problems. The project has given the facility a much better system overall and increased system capacity enough to cover additional compressed air load. This article describes what was done to improve their compressed air system.
Process Expo delivered an exciting and informative four-day event at the McCormick Place Convention Center attracting a qualified group of attendees who took advantage of the various educational tracks including food safety, hygienic design and FSMA regulations. Attendees were also able to see three full working production lines right on the show floor, and even explore state-of-the-art technology in the Virtual Reality Showroom.
A large mining complex in a remote northern region of the world invited a compressed air auditor in to assess the efficiency of a problematic system. Site personnel and their air compressor supplier were concerned a system in one of the buildings was not running optimally, and wanted to know what size of compressor to install in the facility. The auditor found significant savings in this target system, but even larger potential savings were found in other ancillary systems in the complex, as part of an extra investigation conducted while at the site. Overall, the potential energy savings total more than half of a million dollars, if all recommendations are implemented.
A zinc producer spends an estimated $516,000 annually on electricity to operate the air compressors in a compressed air system at its north American plant.  The current average electric rate, at this plant, is 5 cents per kWh, and the compressed air system operates 8,760 hours per year. This system assessment recommended a group of projects able to reduce these energy costs by fifty-one percent (51%) to an annualized $270,000.  The simple payback of the project was 15 months – without taking into account potential incentive dollars from the local utility.
A meat processor, located in Canada, hired a consultant to assess their compressed air system as part of a company-wide energy conservation effort. The assessment and analysis showed, despite having a modern compressed air system using a VSD air compressor and pressure/flow control, the system was running inefficiently and had significant levels of leakage and inappropriate use.
While late summer may not be the time of year many of us think about heat recovery, the potential for energy savings in compressed air systems should be on our minds year-round. For those involved with the compressed air systems within International Wire Group’s facilities, energy savings is on their minds each day. This culture of continuous improvement has everyone on the lookout for savings wherever possible.
A steel distribution and processing company has upgraded and consolidated the compressed air systems in two of their distribution and processing facilities for big energy savings. The previous compressed air systems were running in modes of operation with very low efficiency. A complete replacement of the two systems with new air compressors and dryers has reduced the energy consumption significantly.
The facility uses a large amount of electricity to manufacture laminated glass in the autoclave process. This process is the largest consumer of compressed air in the facility which made compressed air a major target in reducing energy costs for the facility. As the volume of compressed air in the autoclave is significant, the system is constantly pressurized with large 150 HP air compressors to reduce production times and fill times of the autoclave.
This plant has three production lines producing snack food. Depending on the time of year and production demand the plant can operate anywhere from no production lines to all three production lines. A thorough supply and demand-side system assessment was done at this plant. This article will focus on some recommended demand-side reduction projects including nitrogen generation, air vibrators, leaks and vacuum venturis.
The company specializes in fabrication of precision assembled customized parts for OEM’s and system integrators. Since 1997 the company has steadily grown in size and capacity as the demand for its high quality fabrications has increased.  Through the years, many new CNC machines, laser cutters and powder coat painting operations have been added, but with all the expansion the facility has amazingly kept the plant compressed air consumption low. This has been achieved by following excellent “best practice” compressed air efficiency principles and by keeping watch on system waste.