Industrial Utility Efficiency    

Piping/Storage

An air receiver tank (sometimes called an air compressor tank or compressed air storage tank) is a type of pressure vessel that receives air from the air compressor and holds it under pressure for future use. The tanks come in a range of sizes and in both vertical and horizontal configurations. An air receiver tank provides temporary storage for compressed air. It also helps your compressed air system run more efficiently.
This article describes a compressed air retrofit project implemented at Kellogg’s Eggo factory located in San Jose, California. Kellogg’s continues to realize both annual energy savings and quality improvements because of the upgrade. In addition, Kellogg’s received a substantial utility incentive from Pacific Gas and Electric Company, which was based on the achieved energy savings.
Power Smart® efficiency measures for compressed air systems at Tolko’s paper mill and sawmill at The Pas are saving the company more than $125,000 a year.  
Production processes get their energy from the air stored at higher pressure in the piping distribution system. The air compressors simply replenish the air that is consumed. It is an important distinction to make. The energy input in compressing the air is supplied to the connecting pipes for delivery to the various demands throughout the facility.
Pneumatic air cylinders play a major role in allowing a modern sawmill to produce at the high-speed production rates required. Stable air pressure is critical to allow the air cylinders to respond in a timely manner and avoid any production delays.
We conducted a comprehensive compressed air system assessment. Opportunities to improve the system were found in the main piping system, in reducing pressure losses in the mold machine piping, and with the high ambient temperatures found in the compressor room. We estimated energy savings of 403,500 kWh per year for a power savings of $65,000 per year. The total projects costs were $48,000 for a simple ROI of nine (9) months.
An industrial manufacturing plant (producing commercial water meters and valves) had engaged us to conduct an ‘on-site’ Energy & Utilities Assessment of their facility. The annual ‘spend’ for electricity, natural gas, fuels and water was about $ 2.0 million.
In many industrial plants there are one or more applications with intermittent demands of relatively high volume. One example is the use of dense phase transport systems to convey the cement. Dense phase systems can cause severe dynamic pressure fluctuations affecting quality of the end product in a plant.
Sitting on his desk the day Brian began his new job as Plant Engineer for Carbo Ceramics’ McIntyre, GA facility was a proposal to purchase a new 150 HP air compressor as a backup machine. The facility already had six of these machines and, yes, all six ran almost continuously.
Roxane Laboratories, Inc., a subsidiary of Boehringer Ingelheim Corporation located in Columbus, Ohio, created a world-class air system that generated $61,314 per year in electrical energy cost savings (1,156,868 kWh), improved productivity and quality, and allowed the successful completion of a significant plant expansion.
This aluminum mill spends $369,000 annually in energy costs to operate their compressed air system. This system assessment recommends actions reducing annual energy costs by $120,000 and improving productivity and quality by delivering clean, dry compressed air.