Industrial Utility Efficiency    

Piping/Storage

The company specializes in fabrication of precision assembled customized parts for OEM’s and system integrators. Since 1997 the company has steadily grown in size and capacity as the demand for its high quality fabrications has increased.  Through the years, many new CNC machines, laser cutters and powder coat painting operations have been added, but with all the expansion the facility has amazingly kept the plant compressed air consumption low. This has been achieved by following excellent “best practice” compressed air efficiency principles and by keeping watch on system waste.
The Compressed Air Challenge® (CAC) is a voluntary collaboration of industrial users; manufacturers, distributors and their associations; consultants; state research and development agencies; energy efficiency organizations; and utilities. This group has one purpose in mind - helping you enjoy the benefits of improved performance of your compressed air system. The mission of the Compressed Air Challenge (CAC) is to provide resources that educate industrial users about optimizing their compressed air systems.
This refinery currently spends $735,757 annually on the electricity required to operate the compressed air system at its plant. The group of projects recommended in the system assessment will reduce these energy costs by an estimated $364,211 (49% of current use). Estimated costs for completing the recommended projects total $435,800. This figure represents a simple payback period of 14.4 months. The firm also reduced compressed air demand by 732 scfm allowing them to save $441,544 by down-sizing the back-up rental diesel air compressors.
This article presents a case study of Grimmway Farms; a carrot growing and packing firm located in California’s Central Valley that was able to improve its compressed air system efficiency after implementing system automation and making relatively small equipment and piping changes.
This commercial printing facility is located in the Northeastern part of the U.S.  Like most facilities, the plant has seen many changes over the years.
The facility is a plastics injection blowmolder and is a division of a large corporation. The following information was produced from a compressed air system assessment done over seven days.
How do you test a 747 engine to ensure reliability once it’s airborne at 600 miles an hour?
This facility processes bulk food ingredients into finished packaged food products. The factory belongs to a division of a large corporation and was spending $732,342 annually on energy to operate their compressed air system. This system assessment detailed twelve (12) project areas where yearly energy savings totaling $214,907 could be found with a minimal investment of $68,350. Due to space constraints, this article will detail only the higher impact project areas. The over-all strategy for improving this air system centers on improving specific power performance of the #3 centrifugal air compressor and reducing over-all demand with compressed air savings projects.
Almost every industry in America today is experiencing higher costs – energy, raw materials, labor, health care, shipping – you name it.  Energy prices have been rising and many experts forecast that these increases will continue.  Energy costs sometimes are overlooked when developing productivity and cost reduction plans.
Motor Coach Industries, headquartered in Schaumburg, Illinois, is the largest manufacturer of intercity tour coaches for the tour, charter, line-haul, scheduled service, commuter transit and conversion markets in the U.S. and Canada. The company operates a four screw-type air compressor system at its Clarence Avenue plant in Winnipeg. To maintain adequate system pressure at the plant, Motor Coach was forced to run all four compressors 24 hours a day, seven days a week.