Industrial Utility Efficiency    

Air Treatment

Factory lasers use nitrogen right at the cutting point on the metal because the high temperatures used in the process can often cause oxidation. When oxidation occurs, the metal pieces being cut can be damaged, as can the tooling creating the cut. Structural damage or inaccurate cuts can make parts weak and render them useless. The use of nitrogen at the point of contact from laser to metal removes oxygen from the cutting area and helps cool the die as it cuts, thus preventing oxidation. This prevention improves the quality of the final products, produces less scrap metal and cuts back on the reworking of pieces.
Industry standards serve a very important purpose for the end users of compressed air equipment.  If the standards are well written, they can help to promote the equipment that they govern, as long as the equipment manufacturers properly apply and promote the standards.
Boeing Canada has replaced their onsite membrane style Nitrogen generator with a new more modern system with increased capacity and higher efficiency.  As a result, the company is now using minimal amounts of expensive liquid Nitrogen, and has reduced the energy cost per unit of gas produced by 83%.
Compressed Air Practices interviewed Mark McKean (National Sales Manager) from Prevost Corporation.
Motor Coach Industries, headquartered in Schaumburg, Illinois, is the largest manufacturer of intercity tour coaches for the tour, charter, line-haul, scheduled service, commuter transit and conversion markets in the U.S. and Canada. The company operates a four screw-type air compressor system at its Clarence Avenue plant in Winnipeg. To maintain adequate system pressure at the plant, Motor Coach was forced to run all four compressors 24 hours a day, seven days a week.
New Flyer Industries is a Winnipeg based heavy duty bus manufacturer, supplying vehicles to the US and Canadian markets.  The company specializes in vehicles with†alternative-fuel drives such as electric trolleys, gasoline-electric and diesel-electric hybrid vehicles; as well as standard diesel buses.
The NFPA 99 (National Fire Protection Agency) Standard for Healthcare Facilities (2005 Edition) is the current Code by which Healthcare facilities in the U.S. design their compressed air systems.  The NFPA 99 Standard covers many requirements for medical gases, with compressed air being just a component of the Standard.