Industrial Utility Efficiency    

Air Treatment

Air compressors can produce a lot of water. Humidity in ambient air, once compressed, results in much of this water falling out, which we know as condensate. On a warm and humid summer day with inlet air temperatures of 80 oF, a 75-horsepower (hp) air compressor running fully loaded can produce over 25 gallons of condensate in just one eight-hour shift, with another five gallons being produced once the compressed air is sent through a dryer. The compression process allows for the air, water vapor, and lubricating fluids to mix. Once the condensate leaves the system, trace amounts of lubricant travel with it. This condensate should be processed through an oil-water separator before being discharged to groundwater or wastewater treatment plants.
Boeing Canada has replaced their onsite membrane style Nitrogen generator with a new more modern system with increased capacity and higher efficiency.  As a result, the company is now using minimal amounts of expensive liquid Nitrogen, and has reduced the energy cost per unit of gas produced by 83%.
Compressed Air Practices interviewed Mark McKean (National Sales Manager) from Prevost Corporation.
Motor Coach Industries, headquartered in Schaumburg, Illinois, is the largest manufacturer of intercity tour coaches for the tour, charter, line-haul, scheduled service, commuter transit and conversion markets in the U.S. and Canada. The company operates a four screw-type air compressor system at its Clarence Avenue plant in Winnipeg. To maintain adequate system pressure at the plant, Motor Coach was forced to run all four compressors 24 hours a day, seven days a week.
New Flyer Industries is a Winnipeg based heavy duty bus manufacturer, supplying vehicles to the US and Canadian markets.  The company specializes in vehicles with†alternative-fuel drives such as electric trolleys, gasoline-electric and diesel-electric hybrid vehicles; as well as standard diesel buses.
The NFPA 99 (National Fire Protection Agency) Standard for Healthcare Facilities (2005 Edition) is the current Code by which Healthcare facilities in the U.S. design their compressed air systems.  The NFPA 99 Standard covers many requirements for medical gases, with compressed air being just a component of the Standard.