Industrial Utility Efficiency

Compressor Controls

A large chemical plant in Celje, Slovenia, planned to retrofit a kiln used to produce titanium dioxide. To make space for the new equipment related to the retrofit, the plant needed to relocate its high-pressure compressed air system feeding an adjacent pressing process used to dry the material before firing it in the kiln. However, a comprehensive compressed air audit using cloud-based software showed the plant did not need to relocate the system.

Variable Inlet Guide Vanes Boost Centrifugal Air Compressor Efficiency

Compressed Air Best Practices® (CABP) Magazine recently caught up with the Compressed Air and Gas Institute (CAGI) to discuss variable inlet guide vanes (IGV). The following interview describes how centrifugal compressor efficiency can be improved thanks to recent developments in IGV technology.

Retrofitting a Compressor with a VFD and Master Controls

As readers of this publication know, there are many ways to save energy in industrial compressed air systems. One common supply side technology is the variable frequency drive (VFD) of the compressor. It is well-documented that positive-displacement compressors with VFDs provide cost-effective savings in comparison to inlet modulating, load-unload, and variable displacement control.

Foundry Air Compressors Out of Control

Quite a number of worst-case compressed air scenarios have been encountered over the years but none may compare to the conditions that existed in a metal foundry somewhere in North America. For reasons you are about to discover, we will not reveal the name of this factory or its location, in order to protect the innocent from embarrassment.

Cloud Computing with Simulations for Air Compressor Networks

Production complains about frequent work stoppages due to air supply related problems. It wants a more reliable consistent source of compressed air. Maintenance says it will need to replace an older compressor with a new one to improve the reliability and stability of the system. Maybe purchase a bigger one than currently needed in anticipation of future increases in air demands. Management wants assurances a good return on the investment will be realized from the expenditure before making a financial commitment. For comparing and evaluating alternatives, a benchmark must be established to determine the cost to run the current system. An assessment must be performed to identify the saving’s opportunities and assign dollar values. Questions about the cost of the assessment and what is to be expected in return need to be answered.

EnergAir Manages Multiple Air Compressors at Whirlpool

EnergAir’s unrivalled expertise in compressed air management is helping to save in excess of \$50,000 per year at Whirlpool Corporation’s Ottawa, Ohio production facility. Whirlpool is the largest global manufacturer of home appliances and employs almost 70,000 people in more than 60 production and technology centres around the world. The Whirlpool plant in Ottawa manufactures a market-leading range of trash compactors, chest freezers, upright freezers and refrigerators.

 

 

Central Monitoring and Control for Multiple Air Compressors

This is a food processing plant where processes and standards are controlled by FDA to AIB standards. Annual plant electric costs for compressed air production, as operating today, are \$116,765 per year. If the electric costs of \$3,323 associated with operating ancillary equipment such as dryers are included, the total electric costs for operating the air system are \$120,088 per year. These estimates are based upon a blended electric rate of \$0.085/kWh.

Digital Valve Positioner enhances the performance of Pressure/Flow Control

Specifying a control valve for Pressure/Flow Control service should be a relatively straightforward process. The range of compressed air flow and pressures must be known along with the target delivered air pressure. With this information, the performance specifications published by the various suppliers can be referenced for selecting a valve package. Often, however, the valve selected is too large in size to ensure it will have sufficient capacity to satisfy current and future flow requirements. Valve manufacturers use different design criteria in rating their units and in how their product is presented. There are no standards.

Air System Pressure Influences Compressor Power - Part 2: The Influence of System Pressure on Centrifugal Compressors

It is common to see energy assessment specialists treat centrifugal compressors like positive displacement compressors when attempting to reduce compressed air system energy consumption. Unfortunately, centrifugal compressors are normally much larger, and miscalculations can easily represent hundreds of thousands of dollars in overestimated energy savings. These errors are not malicious; they result from oversimplified best practices perpetuated by individuals with limited centrifugal compressor knowledge. This type of knowledge is not readily available and most energy assessment specialists do not have access to engineering teams responsible for the technical development and design of centrifugal compressors.

Air System Pressure Influences Compressor Power - Part 1: System Pressure’s Influence On Rotary Screw Air Compressors

Energy conservation measures (ECMs) associated with compressed air have received a significant amount of attention over the years, mostly due to a reasonably short financial return compared with other energy-consuming equipment. Over time, many of the recommended corrective actions to reduce compressed air energy consumption were simplified so much that they did not lead to positive results. One of the most common compressed air ECMs is reducing system pressure, and it leverages the best practice calculation —.5 percent power per psi — outlined in the Department of Energy’s Compressed Air Challenge. This article highlights more common issues associated with estimating energy conservation resulting from changing system pressure.

Pneumatech® Biogas Dryers and ConservAir® Flow Controllers

Energy efficiency and sustainability solutions are often associated with more obvious initiatives--such as installing compact fluorescent bulbs—but those solutions fail to dig deeper for the “hidden gems” that can have a much greater impact. For manufacturing and building engineers or anyone else dealing with high potential energy consumption and inrush current demands, compressed air systems are one of the first places to look for significant energy savings and greater sustainability.