Industrial Utility Efficiency    

Industries

Products manufactured at the 100,000-square-foot plant in Kentucky include columns, I-shafts, covers, keylocks, and other dressings, along with shifter applications, such as straight, tap-up/tap-down and gated shifters. In all, the facility supplies automakers with products used in more than 100 different applications, all of which are designed keep vehicles operating safely, smoothly and reliably.

Auto

The Ford Motor Company Kentucky Truck Plant (KTP) not only manufactures upscale SUVs and pickup trucks painted in wide variety of stellar, high-quality colors and finishes –  it does so cost-effectively by conserving annual compressed air energy of approximately 9.2 GWh thanks to a major overhaul of the plant’s compressed air system.

Bulk

Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.

Food

Tate & Lyle’s sustainability actions involve countless initiatives worldwide to minimize its environmental impact by reducing emissions and using water sustainably. Whether it’s the use of a low-pressure blower instead of a high-pressure compressed air system to save energy, or a $75 million natural gas-fired Combined Heat and Power (CHP) system to replace coal as a power source at its corn wet mill in Lafayette, Indiana, Tate & Lyle is on a mission to protect the planet.

Medical

The air is delivered through a distribution piping system that ends with a medical air outlet within the room. Outlet requirements per room are governed by American Institute of America (AIA) Guidelines for Design and Construction of Hospitals and Healthcare Facilities. Equipment is plugged into the medical air outlet to treat the patient. Many studies have been done determining the load required for medical air compressors. The sizing can be calculated using several methods. 

Metals

Manufacturers familiar with the U.S. Environmental Protection Agency (EPA) ENERGY STAR® Energy Treasure Hunts initiative know it’s a great way to save energy and natural resources – as long as it’s done right – which is why some are turning to perhaps their best asset to achieve success: their unionized workforce.

Paper

The facility has a compressed air system consisting of four, 200-horsepower (hp) two-stage water-cooled lubricant-free reciprocating air compressors. The air compressors are controlled individually with local pressure switch controls connected to a common pressure sensing point. These air compressors have been operating since the mid-1960s and are very difficult and expensive to maintain because parts are scarce and service companies with experience servicing this type of air compressor are difficult to find.

Pharmaceutical

This article is intended to show the relationships between risks and specifications, opportunities and responsibility in validation, and in particular, the use of modern and calibrated measurement technology in the sample chain.

Plastics

By making changes primarily focused on compressed air uses, Winpak, an international plastics products manufacturer based in Winnipeg, Manitoba, Canada, increased compressed air production capacity and reduced annual energy consumption by 33%. These benefits have been accomplished while the company was making the switch to lubricant-free compressed air to support product quality goals. This article discusses some of these changes and addresses measures that could be implemented in any compressed air system.

Power

A newly constructed ethanol plant experienced control gap issues shortly after comissioning.  This article discusses the cause of the issue and how the problem was solved.

Printing

The Trinity Mirror Group print works on Oldham is one of the UK’s largest newspaper printers. The nine presses in the facility produce around 1million papers every day, including the Independent, the Daily Mirror and a range of local, regional and sports titles. Printing on this scale does not come cheap in energy terms, however. The plant’s annual electricity bill is in the order of £1.5millon. With energy prices on the rise, and a strong desire to improve environmental performance and reduce its carbon footprint, the plant’s management has recently embarked on a project to cut energy use substantially.

Transit

When the New York City Transit Authority (NYCT) set out to comply with local regulations calling for reductions in energy usage, it leveraged new air compressors for use in transit bus maintenance and repair – and took things to another level by recovering air compressor waste heat to provide hot potable water for the bus depot. The air compressor and heat recovery system, installed in spring 2017, is on its way to helping NYCT achieve the best energy savings possible.

Wastewater

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.
Bottling companies and breweries, in California, are benefiting from a three-step system assessment process aimed at reducing the electrical consumption of their compressed air systems. The three-step process reduces compressed air demand in bottling lines by focusing on open blowing and idle equipment, and then improves the specic power (reducing the energy consumption) of the air compressors.
Many passenger cars on roads in Germany contain efficiency concepts that make a considerable contribution to lowering emissions. Automotive manufacturers such as VW have gone even further than this, by applying efficiency strategies in their own value added chain. Because the benefits of pneumatics in automotive industry production processes have seen pneumatic actuation win over other drive technologies, efficient use of compressed air plays a key role in increasing energy efficiency.
The United States accounts for roughly half of the global pharmaceutical market. This certainly keeps the Food and Drug Administration (FDA) busy in its oversight of pharmaceutical safety and effectiveness, including with the production processes. As the pharmaceutical industry has grown, so too has its utilization of compressed air for breathing air, operation of equipment and instrument air.
This Midwestern prepared food company now spends $131,011 annually on energy to operate their compressed air system.  This figure will increase as electric rates are raised from their current average of 6.0 cents per kWh.  The set of projects recommended below will reduce these energy costs by $38,736 or 29%.
Nitrogen, an inert gas comprising 79% of the atmosphere, can be distilled from ordinary air. However, companies that use this product in their everyday operations know that it’s not quite that simple and much more expensive than the stuff we breathe. The primary means of obtaining nitrogen for industrial use is to transport it onsite in liquid form, which must be shipped and stored at cryogenic temperatures. But, really, what’s the point of turning nitrogen into liquid for shipping, transporting it to where it’s used, and then turning it back into gas?
Drinking water and wastewater systems account for approximately 3-4 percent, equivalent to approximately 56 billion kilowatts (kW), or $4 billion, of energy use in the United States, adding over 45 million tons of greenhouse gases annually. Further, drinking water and wastewater plants are typically the largest energy consumers of municipal governments, accounting for 30-40 percent of total energy consumed.
The Focus on Energy Water and Wastewater Program was developed to support the industry because of the enormous potential to reduce energy use without compromising water quality standards. Through the program, numerous water and wastewater personnel have learned that energy use can be managed, with no adverse effects on water quality. Most locations that have saved energy have found improved control and treatment.
The concept offers new possibilities for generating positive pressure or vacuum in a variety of applications. “By applying screw compressor technology to low-pressure air compression, we’ve greatly improved efficiency,” said Pierre Noack, President and CEO of Aerzen USA. The Delta Hybrid has seven patents or patent applications, making it one of the most innovative products in compression technology.
The object of this article is to look at some very typical industrial water treatment processes and various compressed air and energy savings projects that have worked well for our clients over the years. The basic fundamentals with regard to compressed air usage are similar to municipal water treatment – a good starting point.
The Hoffman U.S. Machinery Division was established in 1905 outside of East Syracuse, New York. The initial product was an exhauster for the dry cleaning industry — pulling a steam vacuum across the garments. The Company grew and soon after began discovering industrial applications for their technologies. After the war period, during which Hoffman manufactured ball bearings and operated it’s own foundry, the company began discovering new industrial markets for it’s products. A significant part of their business was in the wastewater treatment industry.