Industrial Utility Efficiency

Metals

Vane motors can run at much higher speeds (2000 rpm and up), but piston motors tend to turn much slower – less than 1000 rpm. For slower speed applications, vane motors are mated with a gear reducer and called a gearmotor. The gearmotor can produce the higher torque and slower speed needed for some applications, but the gear reducer can add some drivetrain loss. While a piston air motor may not be able to replace a vane motor where high speed is needed, it can be a good choice for high torque/low speed applications.  

Compressed Air Supply at a Metal Machining Plant

This metal fabrication and machining facility produces high-quality precision-built products. Over the years, the plant has grown and there have been several expansions to the current location. The company currently spends \$227,043 annually on energy to operate the compressed air system. This figure will increase as electric rates are raised from their current average of 9.8 cents per kWh.

Evaluating Operational Costs of Sandblasting Operations

As you walk past the “sandblasting cabinet” back in the corner of the plant running alone and without the need for monitoring, does the thought of operational costs enter your mind? When it does, are you happy knowing the cabinet is automatic and does not need a full-time operator? Then, did you say to yourself, I wonder how much that abrasive media costs? How long does it last? Is this a more cost competitive alternative? Is there something that might last longer?

Arkansas Industrial Machinery Helps TIGG Reduce Energy Costs

TIGG Corporation, a manufacturer of activated carbon adsorption vessels, custom air receivers and other steel tanks and pressure vessels, substantially reduced its energy costs after implementing equipment, labor consolidation and procedural changes resulting from a compressed air energy audit. The audit was performed at TIGG's 155,000 square feet manufacturing facility in Heber Springs, Arkansas to determine the efficiency of the existing compressed air system and to set a baseline for TIGG's participation in Entergy Arkansas’ Large C&I Custom Incentive Program.

Precise Air Gauging in Metal Fabrication and Machining Centers

Air gauging relies on a law of physics that states flow and pressure are directly proportionate to clearance and react inversely to each other. As clearance increases, air flow also increases and air pressure decreases portionately. As clearance decreases, air flow also decreases and air pressure increases.

International Wire Trims Compressed Air Costs Using the “Systems Approach”

International Wire Group, Inc. (IWG) headquartered in Camden, NY is the largest bare copper wire and copper wire products manufacturer in the United States with expanding operations in Europe. Products include a broad line of copper wire configurations and gauges with a variety of electrical and conductive characteristics , which are utilized by a wide variety of customers primarily in the industrial and energy, electronics, data communications, aerospace and defense, medical electronics and devices, automotive, and consumer and appliance industries.

Industrial Sandblasting – Where Does All the Air Go?

“Sandblasting” is one of the oldest and most used methods of metal treatment. Various abrasive materials may be loaded manually or by a vacuum system pulling the “grit” from a storage tank. A control valve then operates with the compressed air (bypassing the vacuum pump), being forced into the tank pressurizing the receiver. When the high pressure compressed air goes out the discharge line, it pulls the appropriate amount of grit with it to effectively impinge against the targeted metal surface.

Chillers Save on Energy and Water Consumption

Industrial plants are major consumers of water. Water is used in many processes. Sustainability projects focus on reducing the consumption of water and the energy-costs associated with cooling water so it may be effectively used.

Aluminum Mill Reconfigures Compressed Air System

This aluminum mill spends \$369,000 annually in energy costs to operate their compressed air system. This system assessment recommends actions reducing annual energy costs by \$120,000 and improving productivity and quality by delivering clean, dry compressed air.

Savings at the Steel Mill

This major mill complex upgraded their compressed air system and thereby eliminated \$500,000 in annual rental compressor costs, reduced annual cooling-water costs by \$500,000, and reduced electrical energy costs by \$135,000 per year.